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Preface

The physics of imaging through atmospheric turbulence has been around
for more than 80 years, and over this time it has generated a rich collec-
tion of texts and papers. We came to the field with an image processing
background without having even read an optics textbook. Upon read-
ing some of the imaging through turbulence literature, we very quickly
realized the depth and breadth of the subject, but more strikingly the
lack of an easy-to-read reference for people with a background like us.

The goal of this book is to provide a short introduction to the
subject from the perspective of an image processing person. By image
processing, we are thinking of scientists and engineers working on in-
verse problems in imaging systems with the goal of recovering signals
from corrupted measurements. To this end, we are targeting readers
who would like to know the physics of atmospheric turbulence so that
they can improve their algorithms. Because of the specific perspective
we take here and the targeted audience group, we shall not take a very
rigorous physics-based approach. Unless the reader is already familiar
with wave optics, the learning barrier will be so high that an average
person would not be able to master the concepts quickly. Democra-
tizing the ideas and educating the image processing community is an
important mission of this book.

As we write this book, we aim in delivering the “big pictures”
of the subject. Whenever needed, we streamline background materials
including probability, optics, and optimization. Some sacrifices in the
material are made to balance precision and clarity. Therefore, we do
not regard this book as any substitution of the great optics books of
our time. Whenever possible, we will connect the technical details back
to our theme of computational imaging.

We would like to thank a lot of people who offered generous feed-
back to us: Jeremy Bos, Chris Dainty, Russell Hardie, Dan LeMaster,
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Kevin Miller, Casey Pellizzari, Michael Roggemann, Mike Rucci, Jason
Schmidt, and Mark Spencer. We also like to thank our fellow col-
leagues and students at Purdue: Charlie Bouman, Mark Bell, Mary
Comer, and Amy Reibman, who examined several Ph.D. dissertations
containing materials used in this text. Two members of our group are
particularly instrumental to our turbulence project: Xingguang Zhang
and Zhiyuan Mao. We thank the continuous support of IARPA and
the Michigan State University team in the BRIAR program, especially
Xiaoming Liu, Arun Ross, Anil Jain, Atlas Wang, Humphrey Shi, and
their students.

We also wish to thank Mark de Jongh with Now Publisher in
reaching out to us and helping to make this book possible. In addition,
a big part of the text is presented and recorded at the 2022 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), and
the 2022 IEEE International Conference on Image Processing. Readers
interested in watching the video recordings can go to https://www.

youtube.com/watch?v=g_VY0KToV_s&t=2s.

Nicholas Chimitt and Stanley H. Chan
West Lafayette, IN, United States

June 2023
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1. Introduction

1.1 Scope of This Book

1.1.1 What is Atmospheric Turbulence?

Our Earth’s atmosphere is a beautiful creation. Not only does it pro-
vide necessities for our lives, but it also makes the way we see things
interesting. The following phenomena should be familiar to many of
you: Suppose that you are standing in a desert. There is a car lo-
cated at some distance from your camera. You take a picture of the
car, and you see that the image of the car is wavy and blurry. To
give an idea of what the images would look like, we invite you to take
a look at the examples in Figure 1.1. A natural question, of course,
is whether it is possible to recover the original image from these cor-
rupted measurements. The subject of capturing and recovering images
associated with atmospheric turbulence is broadly known as imaging
through atmospheric turbulence.

Figure 1.1: Examples of imaging through atmospheric turbulence. No-
tice that the captured images look wavy and blurry.
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CHAPTER 1. INTRODUCTION

But exactly what is atmospheric turbulence? When we talk about
“atmospheric turbulence”, we have the tendency to associate the word
with roars of gusty winds and unstable air. The word “turbulence”
carries a lot of assumptions that may vary from person to person. To
begin to describe what turbulence is, we refer to the famous Vincent
van Gogh painting, The Starry Night (1889). The painting shows a
few scientific phenomena that may correlate well with what you think.
Firstly, there is a swirling air flowing in the middle of the sky. This kind
of unstable air flow with a directional movement creates a subjective
feeling of “turbulent”. This painting does not convey a sense of chaos,
but instead a calm, peaceful night. The same is true for turbulence;
turbulence is not necessarily something that is aggressive and forceful,
but instead may be calm and slow-moving. Furthermore, if we look
at the sky, the stars do not appear as points but as big blobs. The
dispersion of the light from a point to a blob is due to a point spread
function. In turbulence, we call it the blur effect. The blur effect
reduces the spatial resolution of the object.

Figure 1.2: A photograph of Vincent van Gogh’s The Starry Night
(1889), which currently hangs in the Museum of Modern Art in New
York.

While the above Van Gogh painting definitely captures some essence
of turbulence that correlates with how we interpret the word, there is an
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1.1. SCOPE OF THIS BOOK

interesting binary definition of the word “turbulent”. In fluid dynamics,
flow is either laminar or turbulent. There is nothing in between. Lam-
inar flow occurs when all elements of fluid move in the same direction
smoothly, everything else is turbulent. The steam pouring out of an
engine exhibits turbulence, similar to cream as it spreads throughout
a cup of coffee. So, if you agree with this definition, then turbulence
is everywhere in our lives. In fact, right under your nose, the mixing
molecules are experiencing turbulence!

So, when will we encounter atmospheric turbulence in images? If
air is flowing under your nose, why don’t you see the effects of turbu-
lence when reading this book? The answer has to do with how light
propagates across different layers of medium with a changing index of
refraction. Figure 1.3 shows a common experiment we all can do at
home. Suppose we put a pencil in a cup of water, the pencil will appear
as bent. The bending of the pencil is caused by the difference in the
index of refraction of air and water. Since water molecules are more
densely packed, it reduces the speed of light. In optics, we say that
the water introduces a phase delay. If we replace water with another
transparent liquid, we will change the index of refraction and so the
bending will appear differently.

Figure 1.3: Physics of refraction. https://smartclass4kids.com/

refraction-of-light/

This same phenomenon happens in the air but in a more nuanced
fashion. We have linked density and air previously, taking this a step
further, we can imagine that as the air undergoes turbulent motion
some areas will have collisions while others will have particles mov-
ing away from each other. The collisions will have more particles per
unit area (thus higher density) than the other areas. This will cause
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CHAPTER 1. INTRODUCTION

microscopic fluctuations in the density of the medium, and thus the
refractive index will also have these fluctuations. The temperature,
humidity, wind velocity, altitude, etc. will all affect this behavior.

As light propagates through this medium, it will experience phase
delays just as in the case of the pencil in water. For the pencil, there is a
significant shifting of its observed location, but we can still easily recog-
nize it as a pencil. In the atmosphere, the light will propagate through
the medium and become dented up along the way to the observer, and
the subsequent phase delay will have structured randomness. This can
be imagined to some degree as looking down at the pencil in the glass
of water while you’re shaking the glass slightly. This will not produce
such a sharp shift but instead smaller random shifts, and therefore it
may be difficult to recognize what we are looking at until the water
becomes still once again. This random phase-induced pixel shifting in
the turbulence literature is known as tilt. For the atmosphere, this
motion will be constant and inescapable, but there will be times when
it is less aggressive than others.

The visibility of the turbulent effect depends on many factors.
However, the two most important ones are distance and heat.

• Distance. The atmospheric turbulence effect would not be vis-
ible if the distance between the object and the camera is close.
The reason is that the propagation of light requires a path. If the
index of refraction is changing slightly in a local segment, then
we need to accumulate many of these segments in order to create
the turbulence effects. If the object is placed very close to the
camera, there is simply not enough distance to accumulate the
turbulence effects.

• Heat. The index of refraction is mainly determined by the den-
sity of air. If the temperature is high, air tends to be less densely
located. But more critically is the instability of the temperature.
Because the atmosphere exists in the presence of wind, external
heat sources, and so on, the mixing of warm and cold air is nearly
ever-present. This mixing occurs in a turbulent fashion and will
contribute to the effects that we see in images.

It is easy to imagine that besides distance and heat, any environ-
mental factor could contribute to the amount of turbulence:

• Altitude. The density of air is different at different altitudes.
When it is near the ground, the air is denser than that in the
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1.1. SCOPE OF THIS BOOK

stratosphere. So, if we take a ground-to-sky picture (e.g., for
astrophotography), we will experience atmospheric turbulence.
Most of the distortions would occur near the ground, and less so
high up in the sky. This is mostly caused by the heat stored on
the ground and sea.

• Humidity. Humidity affects the temperature and amount of
heat. A locally more humid region will have a different heating
and cooling mechanism than a dry region. Therefore, the turbu-
lence effect will also be different.

• Time of day. Turbulence is stronger during the day and weaker
during the night. This is again due to instability in temperature.

• Wind velocity. The wind will act as a mechanism to influence
the mixing of hot and cool air, which may help to speed up the
turbulent mixing. The wind will most notably influence how fast
a turbulent image changes in time.

Because of the locality of the weather conditions (temperature,
humidity, etc.), the optical path from the object to the camera could
vary greatly between the two locations. For example, imagine that you
want to take a picture of Jupiter. If you stand at one site and the air
above you is rapidly flowing, you will see a severely distorted image.
However, if we go to another site where the air is stable, the image will
have a little atmospheric effect. As we can see from the illustration in
Figure 1.4, the amount of turbulence along the optical path between
the camera and the object will determine the quality of the image.

One of the most difficult things in imaging through atmospheric
turbulence is the randomness of the phenomenon. A turbulence-distorted
image is a realization of a random process. Therefore, if you take a pic-
ture now and another picture one second later, the two pictures will
appear different even if the object is stationary. Various mathematical
models can tell us the structure of the randomness, e.g., the covariance
matrix or the autocorrelation function, but we will never know the exact
realization. Therefore, unlike the bending of a pencil in water which we
can predict exactly what will happen, turbulence can vary significantly
even if the turbulence parameters remain the same. Such randomness
does not only make the parameter estimation task extremely difficult,
but it also makes image recovery difficult. Moreover, data collection
is difficult too because there is no way we can capture the turbulence
field. The best we can capture would be the distorted images. The lack

5



CHAPTER 1. INTRODUCTION

Figure 1.4: Examples of imaging through atmospheric turbulence. No-
tice that the changing atmosphere makes the captured images look
wavy and blurry. Image source: https://www.findlight.net/blog/
deformable-mirrors-in-astronomy/

of ground truth, model, precise measurements, etc. makes the subject
significantly more challenging than many mainstream image restoration
tasks such as deblurring.

1.1.2 Why Study This Problem?

If imaging is so difficult, why are we still interested in the subject?
For years, imaging through turbulence is a priority for space-related
missions. Some defense-related industries are interested in the subject
for ground-to-ground applications. More recently, there is an increas-
ing interest in long-range biometric applications. In what follows, we
highlight a few reported applications in the literature.

Astronomy. One of the earliest motivations for developing imag-
ing through turbulence is astrophotography. As one can imagine, this
has connections with space missions including observing planets, the
moon, stars, or galaxies. At least for the past century, physicists and
engineers have spent a tremendous amount of effort trying to under-
stand the birth of the universe, the behavior of black holes [1], and
seeking a habitable planet other than Earth. However, seeing through
a ground telescope is fundamentally limited by the atmosphere. Even
if we can identify and track the target using mechanical instruments,
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1.1. SCOPE OF THIS BOOK

the images are still severely distorted by atmospheric turbulence. Fig-
ure 1.5 shows a raw Saturn image we captured in West Lafayette in July
2022. The telescope used was a fairly low-end one that we could pur-
chase from the internet. The captured images are processed carefully
using many advanced deep-learning algorithms. As we can observe, the
image resolution has been significantly improved. From there, physi-
cists can perform various analyses to answer their scientific questions.

Figure 1.5: Imaging through atmospheric turbulence has an important
usage in astronomy. Shown in this figure are some of the real captures
we did in July 2022, in West Lafayette, Indiana. By developing image
reconstruction algorithms, we can recover various planetary objects.

Defense Missions. The development of imaging through tur-
bulence is never separable from defense missions. Unmanned aerial
vehicles (UAVs) constantly carry out remote sensing tasks. However,
due to the atmosphere, the images being captured would be severely
distorted as shown in Figure 1.6. If we want to perform any downstream
computer vision tasks such as identifying an object, understanding the
action, or tracking the object, we need methods to compensate for the
turbulence effect.

Some readers at this point may ask: both the current example
and the previous example assume a conventional camera. Why not
use a more sophisticated adaptive optics system for the astronomical
application, and perhaps use a camera with a different wavelength or
even use radar / LiDAR for the monitoring application? The answer is
typically associated with the constraint of the cameras we have. This
could include the cost, size, weight, and power. Conventional cameras
are easily accessible. They are also significantly less expensive than
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Figure 1.6: A monitoring application of techniques developed for imag-
ing through turbulence. Shown in this figure is a reconstruction result
for an airborne image.

specialized cameras. As such, it is easier to deploy conventional cameras
at a large volume. For some types of missions, the added functionality
of specialized cameras may not justify the cost.

Biometrics. Another increasingly popular application of imaging
through atmospheric turbulence is human and object recognition. The
idea is to place long-range cameras in strategically chosen locations
for monitoring purposes. With the distance being long and ground-to-
ground, the turbulence effect becomes unavoidable. Figure 1.7 shows a
cartoon illustration of the problem. In the same figure, we also show a
realistic image recovery of a long-distance object. In this example, we
use optical character recognition as the task. Without appropriately
processing the image, it would be extremely difficult to recognize the
pattern in the image.

Figure 1.7: A monitoring application of techniques developed for imag-
ing through turbulence. Shown in this figure is a reconstruction result
for an airborne image.
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In computer vision and image processing, imaging through atmo-
spheric turbulence is often an upstream task. It means that we are
interested in modeling the physical phenomenon of the turbulence, and
processing of the images using algorithms. Some prior work develops
hardware to acquire images in a different way, such as the speckle imag-
ing or adaptive optics. Although any of these can be the terminal task,
they can also be fed into other downstream tasks such as detection
and tracking. A frequently asked question is whether it is necessary to
recover the images before running any of these recognition algorithms.
We do not think there is a definitive answer at this moment, because
some people argue that no matter what restoration we do, the features
we use to perform the restoration are likely the same as the features we
use to perform recognition. So why not just do the recognition directly?
Others argue that the prior information and signal structure being ex-
plored by restoration are different from recognition. For example, in
restoration, we typically use a large spatial-temporal window to align
the features with the help of some specially chosen loss function (loss
functions in the sense of deep learning). Integrating these techniques
in recognition would basically require us to perform the restoration.

Another important aspect of the problem is the end goal. An as-
trophysicist probably has a different expectation from law enforcement.
For astronomy, we care about a small field of view because the stars
are so far away. We want very high resolution and we can afford to
buy big telescopes. For law enforcement, it is more likely that we will
use standard cameras to see a scene with a large field of view. The
difference between a small field of view image and a large field of view
image is the turbulence type. If the field of view is small, the turbulence
will most likely be correlated, sometimes perfectly correlated. This is
an easier problem in the sense of deblurring because the blur will be
spatially invariant. However, the object will usually be small and so
we will have a weak signal. If the field of view is large, the turbulence
will a lot harder to handle because one point in the image may not cor-
relate strongly with another point in the image. Therefore, algorithms
developed for astrophysics may not apply to a ground-to-ground prob-
lem. The simulation parameters will be different, and the restoration
techniques will also be different.

As far as this book is concerned, we are mostly interested in
ground-to-ground imaging. This means that we are more focused on
computer vision and image processing instead of physics and astron-
omy. Under this context, it makes sense for us to aim for speed, scale,
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and image appearance. If we want to train a neural network to recon-
struct the image, we expect to have a real-time simulator that can be
integrated into the restoration algorithm to predict the distortion. In
physics applications, we will likely have less urgency for speed as we
will be more interested in resolution and potentially new discoveries.
Therefore, as you read this book, we hope that you can appreciate the
signal processing aspect of the problem.

1.2 Computational Imaging

One may look at the history of imaging through atmospheric turbu-
lence, which has been studied in its modern form for 80 years since
Kolmogorov, and wonder: What new angles can we take? With almost
sure probability, every aspect of the problem would have some prior
work, from hardware to algorithms. In parallel, signal processing and
computer vision have experienced a paradigm shift in recent years with
the advent of deep learning methodologies. The broader community has
dedicated a considerable amount of time to these methods which are
constantly advancing and replacing older methodologies. Of particular
interest to us for this book is deep learning for image reconstruction.

The angle we take in this book is what we called computational
imaging through turbulence, contrasting the classical imaging through
turbulence. The word “computational” highlights the unique concep-
tual difference that we are not solving the inverse problem in a post-
processing manner. Instead, we emphasize the significance of having a
co-design of the computational forward model and the computational
algorithm. This co-design philosophy is particularly important when
we start to build neural networks to recover images. We want the net-
work to acknowledge the physics of turbulence. Conversely, we want
the forward image formation model to be compatible with the neural
network, e.g., being differentiable, scalable, and fast.

1.2.1 Computational Camera

The spirit of computational imaging is to co-design the camera’s optics
and the image processing algorithm. Perhaps the most common view
of computational imaging is to co-design the acquisition unit (typically
a camera) and the reconstruction algorithm. For the co-design to make
sense, the camera should have a configurable component. For example,
in coded aperture [2], the configurable component is the spatial coding
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of the mask. In lensless imaging [3], the configurable component is the
diffuser. The configuration component can also be a light source as
in the case of structured illumination where the configurable compo-
nent is the illumination pattern. Magnetic resonance and computed
tomography imaging also share a similar spirit to these methods as
the acquisition occurs in a different domain. Other examples of these
co-design concepts include light-field imaging [4], holography, plenoptic
camera, and ghost imaging or on the image sensor level, cameras such
as the event camera, 1-bit quanta image sensors, time-of-flight detec-
tors, and focal plane arrays. We refer to this co-design of hardware and
algorithms as computational camera models. These models are at the
intersection of computer vision, optics, and signal processing.

In a conventional camera, we can think of the camera as being a
passive device. If we use x ∈ Rd to denote the ground truth image in
the object plane, and y ∈ Rd to denote the observed image in the image
plane, the camera can be mathematically described as the mapping G
from x to y:

y︸︷︷︸
observed image

= G︸︷︷︸
camera

( x︸︷︷︸
true image

). (1.1)

In a conventional (non-computational) camera, the camera model G is
often fixed and known.

A post-processing image reconstruction algorithm for the conven-
tional camera is to find the best estimate x̂ by minimizing a certain
loss function:

x̂ = argmin
x

Loss(G(x),y). (1.2)

For example, if we prefer the sum square loss, then we have

Loss(G(x),y) = ∥G(x)− y∥2. (1.3)

Other loss functions may be used or a regularization function for x to
improve the optimization search space.

The key observation of the above equations is that in a con-
ventional capture-then-reconstruct camera setting, the camera is pre-
defined. While we use the model G during reconstruction, the design of
G is completely separated from the reconstruction. We almost always
want G to produce the ideal image and for good reasons.

In a computational camera, the above isolation of the camera and
the algorithm is replaced by a co-design philosophy. The first thing we
do is to parameterize the camera with a finite set of tunable knobs θ.
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This θ can contain any attributes of the camera. For example, we can
input the exposure time, exposure pattern [5], coded aperture pattern,
etc. By changing the parameter θ, we effectively change how the image
is acquired.

The presence of the tunable parameter θ makes the overall design
interesting. Instead of solving a one-variable optimization in Equa-
tion (1.2), we are conceptually solving the joint optimization

x̂, θ̂ = argmin
x, θ

Loss(Gθ(x),y). (1.4)

This optimization says that while we are looking for the best estimate
x, we are also asking the camera Gθ to be simultaneously configured. If
we change x, Gθ(x) will change and so the loss will change. Similarly,
if we change θ, Gθ will change and so the loss will also change. The
conventional camera philosophy tells us to fix a θ by standard metrics
(aberrations, field of view, etc.) and estimate the best x̂. The com-
putational camera says to design Gθ in such a way that aids in our
estimation of x̂.

So are we done yet? No. There are a few issues regarding the
optimization defined in Equation (1.4). Firstly, it does not capture the
“design” of a reconstruction algorithm. The reconstruction algorithm
is not about finding one particular x, but a mapping that takes any
measurement y and return us an estimate. Secondly, when we talk
about camera design, we are not interested in one particular ground
truth image x. We are generally interested in all images. Finally,
Gθ is typically realized through hardware. This will complicate our
numerical optimization, Gθ doesn’t necessarily have a gradient, thus
true joint optimization will be challenging.

To respond to the first two requests, we realize that in any image
reconstruction literature, the reconstruction algorithm is always a map-
ping that takes y and gives us an estimate x̂. Sometimes, perhaps most
of the time, the reconstruction algorithm will require side information
such as knowledge about Gθ. In this way, we can write

x̂ = R(y,Gθ)︸ ︷︷ ︸
reconstruction

,

where R is a function that takes the measurement y and return us the
estimate x̂.

The reconstruction algorithm can take a variety of forms. For
example, in the pre-deep-learning era, the reconstruction is often a

12



1.2. COMPUTATIONAL IMAGING

regularized minimization, e.g.,

Rλ(y,Gθ) = argmin
x

∥y − Gθ(x)∥2 + λ g(x),

where g(x) is a regularization function and λ is the corresponding reg-
ularization parameter. If we choose g(x) = ∥x∥TV, then we have a
total-variation minimization. We put a subscript λ underneath R to
emphasize that the reconstruction mapping is dependent on the regu-
larization parameter λ.

In the deep-learning era, we often use a deep neural network as
the reconstruction. In this case, we parameterize R as Rψ so that

x̂ = Rψ(y, Gθ)︸ ︷︷ ︸
neural network

. (1.5)

The way to think about ψ is that it represents the weights of the neural
network. When the reconstruction neural network is trained, we will
send the measurement y together with the camera model Gθ to the
network. The network will then return us x̂.

For learning-based approaches, the reconstruction can be formu-
lated as

ψ̂ = argmin
ψ

Ex

[
Loss(x̂,x)

]
= argmin

ψ
Ex

[
Loss

(
Rψ(y, Gθ),x

)]
. (1.6)

The symbol E[·] in the equation denotes the statistical expectation. We
introduce the expectation in the equation because Loss(x̂,x) is only
for one particular image x. If we want to co-design the system for all
images, then we need to take the average over all possible images we
want to study. For example, if we are building a computational camera
for human faces, then the expectation is taken over all the face images.
In deep learning, we can consider x as a training sample. By taking
the statistical expectation over x, we ask the minimization to be taken
with respect to the entire training set.

Regarding the issue of the gradient of Gθ, if the camera Gθ is
simplistic enough that a gradient calculation is possible, this can be
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formulated as a joint optimization problem:

(ψ̂, θ̂) = argmin
ψ,θ

Ex

[
Loss(x̂,x)

]
= argmin

ψ,θ
Ex

[
Loss

(
Rψ(y, Gθ),x

)]
. (1.7)

This typically requires some potentially limiting assumptions. One
potential assumption is that geometric optics is sufficient in describing
the behavior of the system. We present the following example of a
simple Gθ which may allow for such gradient computation.

Example. Consider a compressed sensing camera where we are
interested in capturing a low-dimensional (compressed) signal in-
stead of the full signal x. The compression scheme we use is a
wide matrix G ∈ Rm×d where m≪ d so that the measured signal

y = Gθ(x) def
= Gx︸︷︷︸

encoded signal

+ n︸︷︷︸
noise term

has a much lower dimension than the true signal x. Notice that we
introduce a noise term to make the measurement more realistic.
To reconstruct the signal we create a reconstruction algorithm
(could be a neural network) that does

x̂ = Rψ(y).

Here, we can think of Rψ as a neural network parameterized by
the weight ψ.

To train the neural network and simultaneously find the op-
timal sensing matrix G, we perform the joint optimization

Ĝ, ψ̂ = argmin
G,ψ

Ex,n

[
Loss(Rψ(Gx+ n),x)

]
.

The expectation is taken with respect to both the signal x and
noise n because they are random.

If we consider the hardware feasibility, we can further pose
constraints on G. For example, we can require G to be binary so
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that it can be implemented through digital micro-mirror devices
(DMD).

Figure 1.8 illustrates the conceptual diagram of a typical compu-
tational camera setup. There is a camera Gθ with a few configurable
knobs θ, e.g., exposure pattern, gain pattern, aperture mask, etc. Us-
ing the compressed sensing example above, θ would mean the sensing
matrix G. As the ground truth image x is passed to the camera, we ob-
tain a measurement y. The measurement is passed to a reconstruction
method Rψ to obtain an estimate x̂. The estimate is compared with
the ground truth x to generate a loss. The loss Loss(x̂,x) is fed back
to a training algorithm to update the configurable knobs θ and the
reconstruction algorithm ψ. The process continues until the expected
loss is minimized.

Figure 1.8: Computational camera aims at co-designing the acquisition
unit (often a camera) and the image reconstruction algorithm.

The iterative procedure we described above is for training. During
inference (i.e., deployed to the field), we fix θ to take measurements.
For every captured signal y, we send it to the reconstruction algorithm
to produce an estimate x̂. Since the whole computational camera is
trained to minimize the average loss over a large collection of typical
scenarios, it will work reasonably well on similar scenarios. Some recon-
struction algorithms do not require training, e.g., total variation mini-
mization. Some camera configurations would prefer on-the-fly charac-
teristics (i.e., they can change from one configuration to another as the
scene changes). So, there is a wide range of variety here.

15



CHAPTER 1. INTRODUCTION

1.2.2 Computational Image Formation

A particular challenge for the computational camera line of work is that
the gradient of Gθ may be difficult or impossible to derive for complex
systems. This leads us to draw a distinction that is separate from
the computational camera. One essential requirement of the camera
and algorithm co-optimization is that the reconstruction algorithm Rψ
can “understand” what the camera Gθ is doing, and vice versa. In
particular, the optimization we need to solve is a joint optimization

ψ̂, θ̂ = argmin
ψ,θ

Ex

[
Loss

(
Rψ(y, Gθ),x

)]
.

To explain the issue of “mutual understanding”, we need a neural
network concept known as back propagation. To train a neural network
Rψ, we need to back propagate the gradient of the loss ∇ψLoss(x̂,x) so
that we can make an update of the network weights through a stochastic
gradient descent algorithm. Similarly, to update the camera model Gθ,
we also need some kind of optimization algorithm to inform us how to
update the camera parameter θ.

For generality, let’s suppose that we use a gradient descent al-
gorithm to update both θ and ψ, denoting the overall parameter as
φ = [ψ,θ]. Back propagation creates some difficulty. By chain rule,
finding ∇φLoss requires ∇φRψ(y,Gθ). This will in turn require us to
take the gradient of the camera ∇θGθ. However, ∇θGθ is impossible to
obtain unless Gθ takes a certain mathematical form that allows differen-
tiation. A purely physical device would not allow it to happen, because
there is nothing called the “gradient of Canon 5D f/2.4 camera, with
respect to the exposure time”. Because of this physical-to-algorithmic
gap, we almost always use mathematical equations Gθ to represent the
actual hardware.

When we use a mathematical model to substitute the true cam-
era G, we are no longer working with a computational hardware. To
make things clear, we need to separate the true camera and a model
to approximate the camera. Let’s denote the true camera as G. The
true camera is something we can operate, but we cannot compute the
gradient. One workaround solution is to use a neural network Hθ to
approximate G. Neural rendering, for example, is exactly following this
line of thought. Instead of trying to directly handle the camera (which
does not really have a “gradient”), we train a neural network Hθ such
that Hθ ≈ G. The training of such a neural network (if we can ignore
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the reconstruction part) can be done using

θ̂ = argmin
θ

Ex

[
Loss(Hθ(x),G(x))

]
. (1.8)

Basically, we are looking for a set of network weights such that the
overall network Hθ can mimic the true camera. Substituting this idea
into the computational camera pipeline, we can draw Figure 1.9.

Figure 1.9: Computational camera aims to co-design the acquisition
unit (often a camera) and the image reconstruction algorithm.

The co-optimization of the image formation model (as opposed to
the camera) and the reconstruction algorithm can be formulated via a
joint optimization

θ̂, ψ̂ = argmin
θ,ψ

Ex

[
Loss(Hθ(x),G(x))

]
︸ ︷︷ ︸

learn the camera model

+ Ex

[
Loss

(
Rψ(y, Hθ),x

)]
︸ ︷︷ ︸

reconstruct the signal

. (1.9)

This is a harder problem, but the two terms are intuitive. The first term
is the computational image formation problem where we try to find a
model that describes the camera. The second term is the reconstruction
problem where we construct an algorithm to recover the image.

Using a neural network as Hθ is one of many options. Some prob-
lems, such as developing new optical designs through nano-photonics
meta-materials [6], would fall under the same umbrella. A piece of
meta-material can be considered as an engineered glass with some de-
sired phase properties. To design the phase profile, we have to use
numerical wave approximations to mimic how light passes through the

17



CHAPTER 1. INTRODUCTION

meta-material. If the true meta material is denoted as G, then any
numerical wave approximation is Hθ. As we try to find the best ap-
proximation Hθ, we also need to bare in mind that the reconstruction
Rψ can support. Therefore, even though the joint optimization looks
abstract and complicated, it does capture the essence of the co-design
of optics and reconstruction.

As we use a numerical model to approximate the hardware, we are
no longer working with a computational camera as we are not configur-
ing the camera directly. What we are instead doing is working with a
computational model which is summarized as an equation, algorithm,
or neural network. This progression from a camera to a computational
camera model creates a sub-field in computational imaging, which we
call computational image formation.

1.2.3 Connecting with Imaging Through Turbulence

At this point, we can go back to atmospheric turbulence. Readers who
are familiar with a computational camera might think that for atmo-
spheric turbulence, we can probably build some kind of computational
camera to offset the reconstruction difficulty. In fact, the subject of
adaptive optics is developed for that purpose. However, adaptive op-
tics has both merits (such as a much better phase compensation) and
limitations (such as big, expensive, limited resolution, and requiring a
reference star). We shall not discuss it in detail here.

In imaging through turbulence, the degradation process is gov-
erned by nature. Only God knows exactly how each point on the ob-
ject plane is mapped to a digital value on the image plane. Using the
terminology we defined previously, we must acknowledge that there is
an unknown target function G that takes the input and gives us the
output1:

y = G(x). (1.10)

We stress that the function G is unknown because it represents nature.
The complexity of turbulence is not only that we do not know the

equation of the distortion. Since each turbulent instant is a realization

1The terminology “target function” we use here comes from the literature of
machine learning. A target function in machine learning refers to the ground truth
mapping that we aim to learn from data. A target function is never known in
machine learning because it is the subject of interest. In learning, our goal is to
find a meaningful approximation to the target function by minimizing some kind of
training loss.
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of a random event, there is literally no way we will know exactly how
light is being distorted. This is a very different (and harder) scenario
compared to classical problems such as non-blind image deconvolution
where we know the blur kernel and we also know the spatial invariance
of the convolution. Even in the case of blind deconvolution, we know
the structure of the problem.

But how about the models from the work of Kolmogorov and oth-
ers created many decades ago? Aren’t they experimentally verified to
be accurate? Yes, but what they have proposed are models, not the
target function. The models are what we called the hypothesis func-
tions. Some hypothesis functions are more accurate whereas some are
easier for computation. Mathematically, if we denote these hypotheses
as Hθ, then we have

ŷ = Hθ(x), (1.11)

where ŷ ∈ Rd denotes the prediction made by the hypothesis function
Hθ. Simply put, we can call ŷ as the numerically simulated image,
and Hθ as a simulator. The hypothesis function Hθ is parameterized
by the parameter θ ∈ Rp. For example, the vector θ can contain the
turbulence strength, temperature, etc.

The essence of Hθ is the parameterization of nature. We are not
saying that Hθ is nature, but Hθ is a good approximation of nature.
Being an approximation means that there is approximation error. It
also means that we need criteria to choose a better approximation from
a worse approximation. The criteria are often multifaceted. Some may
have a stronger emphasis on accuracy over a narrow field of view, while
some may want an extremely fast model. The trade-off is often deter-
mined before we even build the simulator. This means that the choice
of Hθ is isolated from the choice of any downstream image processing
tasks including image restoration.

At this point, we should be able to draw the connection between
computational imaging and imaging through turbulence. Instead of
having hardware (e.g. a camera) Hθ to perform the image formation,
we use a computational model Hθ to perform the light propagation
(see Figure 1.10). Although Hθ is not the same as nature, it cre-
ates an artificial process that mimics it. This artificial process adds a
tremendous amount of degrees of freedom, giving us an optimization
problem. Just like the camera configurations in computational cameras
which should be co-optimized with the downstream reconstruction, in
imaging through turbulence, the co-optimization is about the model
Hθ and the reconstruction algorithm Rψ. Therefore, this concept falls
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Figure 1.10: Computational imaging through turbulence focuses on
co-designing the approximation to nature (which is a computational
building block) with the image reconstruction algorithm.

squarely within the framework of computational image formation along
with differentiable light transport and differentiable optics.

1.3 Outline of This Book

After describing computational imaging, we can now elaborate on the
approaches we take in this book. There are several components:

Chapter 2. Image Formation Model. In this Chapter, we
present the foundations of wave propagation physics. To this end,
we need to discuss the concept of Fourier Optics. The way we view
Fourier Optics is that it is a signals and systems perspective for wave
optics. It provides us with the necessary mathematical tools such as
the Huygens-Fresnel principle, Fresnel diffraction, Fraunhofer diffrac-
tion, spatial coherence, point spread function, optical transfer function,
and the image formation equation.

To readers who have prior knowledge about this subject, we have
a tendency to treat Fourier Optics as the ground truth G. We argue
that this is not the case. Under all the sufficient conditions laid out
by Fourier Optics, we can build a highly reliable model Hθ that can
approximate G up to the assumptions we make. For example, if we
assume that the object is sufficiently far away from us, then Fraunhofer
diffraction theory would be enough to describe how wave diffracts and
propagates. However, as we step immediately outside the assumption,
our modelHθ will fail. Therefore, one important emphasis as we discuss
the concepts is the conditions under which our derivations are correct.

Chapter 3. Modeling Turbulence. The objective of this
Chapter is to provide an overview of the other half of the founda-
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tion. Since we are interested in atmospheric turbulence, we need to
understand its origin and its impact to the image formation process.
The approach we take here is to first describe the index of refraction
and its statistical properties under the Kolmogorov model. From there,
we can discuss how light propagates through a stack of phase screens
determined by the index of refraction statistics. The wave propagation
model can be implemented numerically through a technique known as
split-step propagation.

The model we conclude this Chapter with, namely the split-step
propagation, is another model Hθ. Compared to the model we derive
in Chapter 2, the new model is customized for atmospheric turbulence.
However, the design of Hθ in this Chapter is solely aiming to match
G. We care little about the speed, and we almost never care about
what image reconstruction algorithm we are going to use to recover the
image. In fact, historically speaking, turbulence simulators are purely
evaluated based on the statistics of the simulated data compared to
the theoretical statistics. The expectation is that if the simulator is
faithful, we can use it to evaluate any reconstruction algorithm but not
co-optimize with the reconstruction algorithm.

We should also clarify a misconception about the known theo-
retical turbulence model. Under various assumptions, the theoretical
model people developed over the past century is at best amodel. There-
fore, it is not the true G but only a very good Htheoretical. The numerical
simulator we use in practice, including the split-step propagation, is an-
other level of approximation to the theoretical model. Therefore, the
relationship is best described as

G︸︷︷︸
nature

unknown≈ Htheoretical︸ ︷︷ ︸
theoretical model

varies≈ Hsplit step︸ ︷︷ ︸
numerical model

(1.12)

When we say “our statistics match with the theoretical predic-
tion”, as many papers in the literature declare, we mean thatHtheoretical ≈
Hsplit step. The implicit assumption/hope here is that the approxima-
tion error in Htheoretical ≈ G is sufficiently small. In many situations, we
know that this assumption is valid. But in some cases, for example,
when we start to consider amplitude attenuation on top of the typical
phase distortion, we need to resort to a more advanced theory to reduce
the gap between Htheoretical and G.

Chapter 4. Propagation-Free Modeling and Simulation.
This Chapter is one of the two core Chapters of our book. Taking
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into consideration of the reconstruction algorithm, existing turbulence
simulators cannot serve the reconstruction purpose for many reasons:

• Slow. Methods such as split-step is remarkably computationally
expensive. We need to loop through all the pixels of the image
one by one and propagate them from one phase screen to another.
The speed is too low to be even meaningful for the co-design with
reconstruction algorithms.

• Non-differentiable. For an image formation model to be in-
tegrable as part of the reconstruction, a fundamental criterion
is being differentiable in the sense of back propagation. Models
such as the split-step propagation do not satisfy this criterion be-
cause the simulation steps are sequentially executed. Therefore,
the gradient ∇θHθ is very hard to compute.

• Inaccurate. Some methods such as geometric deformation +
Gaussian blur are fast and differentiable, but they barely mimic
nature. As a result, they provide a poor approximation of the
equation Hθ ≈ G.
With these deficiencies in mind, we present a new line of work

in the recent literature that aims to bring the model fast, differen-
tiable, and accurate. The idea is based on a propagation-free method
where the distortion is implemented through a random sampling pro-
cess rather than propagation. For the sampling to make sense, we need
to derive a collection of statistical results. Some of the results are
based on known literature, whereas some are new. More interestingly,
some implementations require (shallow) neural networks to bridge the
numerical gap.

The conclusion of this Chapter is a series of approximations that
maintains the majority of the accuracy of the split-step method while
offering a significant speed up and differentiability. This will allow us
to integrate the image formation model with the reconstruction.

Chapter 5. Image Restoration. In this final Chapter, we dis-
cuss how the computational image formation model Hθ can be used
together with the image restoration algorithm Rψ. We will review the
classical results in lucky imaging, frame alignment, and image decon-
volution. These results will be used to guide the design of many of
the latest deep neural network designs. In particular, we show how Hθ
can be used to synthesize training data. This data synthesis process
is not only done prior to the training process but it can be integrated
during the training by providing multi-scale distortions. Furthermore,
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building blocks of Hθ such as geometric warping and spatially varying
blur can be decoupled during the training process. Since we have a
powerful Hθ, we can synthesize partially degraded images to guide the
reconstruction at different stages. The simulator Hθ can also be used
during inference as a mechanism to estimate the turbulence strength.
Some recent methods send feedback signals from the reconstruction
algorithm Rψ to the simulator Hθ by asking Hθ to generate a “re-
distorted” image so that we know how well our turbulence estimation
is. As you can see here, a plethora of approaches can be developed
when Hθ is jointly optimized with Rψ.
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The subject of this book is imaging through atmospheric turbu-
lence. To describe such a phenomenon, we must understand both the
process by which an image is formed and the way the atmosphere inter-
feres with this process. This Chapter details image formation without
consideration of any degradation by the atmosphere. Our approach
here is to describe the signals and systems concepts that are familiar to
readers coming from an image processing background. We will begin
with a high-level discussion of optics and image formation.

2.1 Ray Optics or Wave Optics?

2.1.1 From Ray Optics to Wave Optics

When modeling a physical phenomenon, one must carefully select a
mathematical model which serves the problem one seeks to analyze. For
the purpose of modeling light, there are two commonly utilized mod-
els in the image processing and computer vision communities. They
are the ray tracing model and the wave model. Ray tracing is useful
in various forms of computer graphics, especially for lens design and
rendering. In ray tracing, we “trace” light rays through space or mate-
rials, with the end result being the distribution of rays in a scene. The
wave model arises from Maxwell’s equations [7, 8]. The wave model is
incredibly accurate, but it is also analytically more difficult compared
to ray tracing.

Readers with a computer graphics background may say: While
it is hard to deny that the wave model is more carefully aligned with
nature, it is arguably overkill for computer graphics applications. Mod-
ern GPUs are capable of performing ray tracing in real time, however,
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the same can not be said about evaluating the wave equations. There-
fore, given its appropriateness, the ray model is far preferable, allowing
us to form strikingly realistic images for various graphics applications
[9, 10]. We completely agree with this argument. In fact, we believe
that ray optics is simple, elegant, and appropriate for applications ex-
actly in the space such as rendering. However, for imaging through
atmospheric turbulence, the random fluctuation of the medium is not
as easy as one would imagine. If we choose ray tracing, we may miss
critical subtleties in the nature of light.

Readers with the optics background may then say: If ray tracing
has deficiencies in modeling nature, we should then pursue the wave
model. As long as we are not working with quantum matters, the wave
model is sufficient to describe essentially all phenomena we would pos-
sibly need for engineering purposes. Specifically, we can describe the
diffraction effects, phase delays, amplitude attenuation, etc, to a high
degree of accuracy. We completely agree on this point, too. In fact,
for almost one century since Kolmogorov, we have seen the remarkable
power of wave optics theory in describing imaging through atmospheric
turbulence. However, the price we need to pay is the level of mathemat-
ical rigor and computation. Wave models can be extremely complicated
and sometimes intractable.

So, what should we do then? In this book, we will take an approx-
imate form of the wave model. Our model is Fourier Optics combined
with the thin lens approximation as described by Goodman [11]. The
motivation for this model arises when one attempts to describe a sys-
tem with a lens using the wave model. Before we discuss Fourier Optics
and the lens models, we shall first highlight the key aspects at a high
level.

2.1.2 This Book: Fourier Optics

To distinguish between the ray tracing and the model taken in this
book, we visually present how these two models describe light’s in-
teraction with a lens in Figure 2.1. Beginning with ray tracing, this
model describes light as rays that travel in straight lines and bend when
passing through media such as a lens via Snell’s law,

sin θ1
sin θ2

=
n2
n1
.

This bending of light is known as refraction, a key feature of ray tracing.
If we know the angle which the incident ray forms with the surface
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(a) Standard refraction (b) Thin lens approximation

Figure 2.1: Visualizing the difference between (a) ray tracing and (b)
the thin lens approximation. The thin lens model will not account for
refractive issues such as the circle of confusion which arises in (a).

normal, θ1, and the indices of refraction n1 and n2 for both regions
of space, we can compute the direction of the ray as it travels through
the lens. This is shown in Figure 2.1 by the change in direction of the
rays as they pass through the entrance and exit of the lens.

Instead of rays of light, the wave model describes a wave as it
passes through the lens. This is given as the solution to a differential
equation with the boundary conditions as determined by the lens. The
wave model captures both refractive and the wave-like diffractive effects
of an imaging system. The trade-off is the difficulty in finding general
solutions to systems [11], even in the case of the simplistic system shown
in Figure 2.1. Therefore, the full wave model will not be suitable for
our more application-driven goals.

The Fourier Optics model combined with the thin lens approxi-
mation does something a bit different. Instead of needing to solve a
differential equation, a simple rule is proposed: the thicker the lens,
the more the wave is delayed in phase – a point we will revisit more
appropriately later in this Chapter. In Figure 2.1, the thickest part of
the lens corresponds to the wave moving slower for longer, hence being
delayed relative to the wave that traversed through thinner sections of
the lens. Roughly speaking, the less the wave is delayed, the less it will
bend. We visualize just the effect of the thin lens approximation in
Figure 2.1, though when combined with the concept of Fourier Optics,
a proper depiction would include waves. For simplicity, we opt for rays
in this case.

Although refraction is approximated for a simpler rule (i.e. by
the thickness of the lens and not Snell’s law), the model successfully
captures the diffractive effects of the wave model. For brevity we will
often refer to the Fourier Optics model with the thin lens approximation
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as simply “Fourier Optics”.
We summarize the key features of ray tracing, Fourier Optics, and

the full wave model as follows:

1. Ray tracing: Ray tracing models the light as rays, which change
direction upon interaction with a surface boundary. The change
in direction is dictated by Snell’s law. Ray tracing describes the
refractive effects of light.

2. Wave model: The wave model requires analysis of a differential
equation which often cannot be solved in closed form. The wave
model incorporates both refractive and diffractive effects.

3. Fourier Optics: Fourier Optics models the light as a superposi-
tion of planar waves. Additionally, it is often paired with the thin
lens approximation giving us a simple analytic tool that results
in a linear space-invariant model of an imaging system. Fourier
Optics can describe the diffractive effects seen in imaging.

The advantage of Fourier Optics is exactly the fact that an imaging
system with a lens can be written in terms of a Fourier transform.
Additionally, the entire imaging system’s response can be written in
a traditional linear systems framework, which leads us to our next
introductory topic.

2.1.3 Linear Space-Invariant Optical Systems

A concept typical to an image processing person is that of an input sig-
nal, J(x), passed through a system, h(x), to produce I(x), the output
signal. A general system of this sort is one of the core focuses of the
classical book from Oppenheim and Willsky [12]. Assuming the sys-
tem is linear and space-invariant (LSI), we may write the input-output
relationship via convolution as

I(x) = h(x)⊛ J(x), (2.1)

where ⊛ denotes the convolution operator. Of course, it is also known
that this may be equivalently written in the Fourier domain as

Fourier{I(x)} = Fourier{h(x)}Fourier{J(x)},

where Fourier{I(x)} denotes the Fourier transform of the input signal.
The goal of this book is to impart the knowledge of turbulent imaging
and embed it within such a simple linear systems relationship.
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It may be natural at this point to wonder what the system h
would entail in an optical system. We will denote I(x) to represent the
observed optical signal at a location x. For the sake of modeling, we are
more interested in the terms on the right-hand side of Equation (2.1).
In the case of J(x), this will represent the “true” object, to be defined
more precisely within our context in due time. As a result, h(x) must
represent everything else; it must represent how the imaging system
forms an image, including effects such as diffraction, any errors in our
focusing, perturbations by the medium, and so on. For the purposes of
this book, h(x) is where the majority of the optics exist.

The key result of this Chapter will be the equations that describe
image formation for two different types of light. We will take the fol-
lowing imaging system to be our example:

I(x) = |h(x)|2 ⊛ J(x).

While this expression is slightly different from our first example, the
idea remains the same. In fact, we will repeatedly return to this equa-
tion in a slightly more complicated form. More specifically, the expres-
sion written in terms of more physical entities will prove to be the more
useful:

I(x) = |Fourier{P (u)ejϕ(u)}|2 ⊛ J(x). (2.2)

This equation is a direct result of the Fourier Optics model. Here we
define P (u) to be an indicator function describing the aperture of the
imaging system and ϕ(u) as the phase error of the imaging system.
Regardless of your familiarity with these concepts at this point, the
purpose of presenting Equation (2.2) is to demonstrate a simple fact:
we can think of our optical system using typical Fourier-based analysis
and reasoning if we know what to “plug in”.

This, to many engineers, should come as a bit of a relief; the
end goal is to arrive at the familiar destination of linear systems the-
ory. There will be many details within this Chapter that are critical
to arriving at and understanding Equation (2.2), though once the as-
sumptions and limitations are understood, some of these details can be
disregarded and we can continue onward from this more comfortable
perspective.
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2.2 Waves

2.2.1 The Scalar Wave Equation

We begin by considering the one-dimensional wave equation. Let us de-
fine a template function g(x) over a space-time domain S = {(x, t) | x ∈
R, t ∈ R} [13]. Using g(x), we construct another function f : S → R
which is a shifted version of g(x):

f(x, t) = g(x− vt), (2.3)

where v ∈ R is the speed of propagation along a particular direction
[m/s]. A different magnitude v will lead to a different trajectory of
the template function through S, as shown in Figure 2.2. When light
propagates through a vacuum, its speed is given as v = c where c =
3× 108 [m/s] is the speed of light.

Figure 2.2: A visualization of two waves moving at two different speeds
through a space-time domain S. The fast-moving wave takes a shorter
time to reach a new position compared to a slow-moving wave.

Our goal is to derive an equation to summarize the behavior of
f(x, t) over S. To this end, let us take the first-order derivative in
space:

∂f(x, t)

∂x
=
∂g(x− vt)

∂x
=
∂g(x− vt)
∂(x− vt) ·

∂(x− vt)
∂x

=
∂g(r)

∂r
, (2.4)

where we defined r = x − vt. Similarly, the first-order derivative in
time is

∂f(x, t)

∂t
=
∂g(x− vt)

∂t
=
∂g(x− vt)
∂(x− vt) ·

∂(x− vt)
∂t

= −v ∂g(r)
∂r

, (2.5)
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Taking the derivatives of Equation (2.4) and Equation (2.5) again, we
obtain a pair of second-order derivatives:

∂2f(x, t)

∂x2
=

∂

∂x

∂f(x, t)

∂x
=
∂2g(r)

∂r2
, (2.6)

∂2f(x, t)

∂t2
=

∂

∂t

∂f(x, t)

∂t
= v2

∂2g(r)

∂r2
. (2.7)

Combining Equation (2.6) and Equation (2.7), we obtain a partial dif-
ferential equation that connects space and time,

∂2f(x, t)

∂x2
=

1

v2
∂2f(x, t)

∂t2
. (2.8)

Equation (2.8) is known as the one-dimensional wave equation. If we
were to instead write the velocity as v = c/n, then Equation (2.8) will
become

∂2f(x, t)

∂x2
=
n2

c2
∂2f(x, t)

∂t2
. (2.9)

Writing the velocity in this way motivates us to consider c to be the
maximum speed and n to be the attenuation. In the case of optics, n
is known as the index of refraction.

We may also extend the wave equation to higher dimensions. This
will give us the high-dimensional scalar wave equation:

∇2f(x, t)− n2

c2
∂2f(x, t)

∂t2
= 0, (2.10)

where x = [x, y, z] ∈ R3 are the spatial coordinates of the wave, and

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is the Laplacian operator. If polarization is involved, we can extend the
scalar wave equation to a vector field f(x, t) = (f1(x, t), . . . , fp(x, t)),
representing the different polarizations of the wave.

2.2.2 Helmholtz Equation

We now seek to utilize Equation (2.10) using a set of elementary so-
lutions. It is likely not a surprise an elementary solution would be a
sinusoidal wave,

f(x, t) = A(x) cos(2πνt+ θ(x)), (2.11)
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with spatially varying amplitude A(x) and phase θ(x). While this form
is certainly valid, it is often mathematically convenient to instead use
a complex representation. Accordingly, we will typically consider a
complex wave function:

u(x, t) = U(x)e−j2πνt. (2.12)

The function U(x) represents the complex envelope, or phasor [13, 11],
which is then modulated by the time-evolving term e−j2πνt.

This particular form of elementary solution presented in Equa-
tion (2.12) is useful as it separates space and time into two distinct
terms. In most situations we will be interested in finding U(x); if we
further wish to describe the time behavior, this can be achieved by
simply appending the temporal modulation term. We note the conven-
tion of a negative sign in e−j2πνt results in a clockwise rotation for an
increase in radians. In order to relate the two forms of solutions, we
can look at the real component of u(x, t), writing Equation (2.12) as

Real{u(x, t)} = A(x) cos(2πνt+ θ(x)),

= f(x, t),

where A(x) is the scalar amplitude and θ(x) is the phase, and further
defining

U(x) = A(x) exp{−jθ(x)}. (2.13)

Let us investigate a few physical properties of our complex enve-
lope. Assuming a non-trivial phase function θ(x), the form of U(x)
suggests the cyclical nature of the envelope. For a constant value
φ ∈ [0, 2π), the set {x | ∠U(x) = φ} defines a set of wavefronts.
The distance between neighboring wavefronts is then said to be the
wavelength of the wave, denoted as λ [m]. We also define the optical
frequency ν (pronounced as “nu”) [s−1] to be

ν =
v

λ
, (2.14)

where v is the velocity of the wave [m/s]. The optical frequency de-
scribes the rate at which the wave oscillates in time as it arrives.

This concept of wavefronts and wavelengths may benefit from be-
ing presented visually. To this end, we provide Figure 2.3, where we
show the following consideration:

V (x) =

∣∣∣∣∣
N∑
i=1

U(x;xi)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

exp{−j(2π/λ)|x− xi|}
|x− xi|

∣∣∣∣∣,
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(a) One point (b) Two points (c) Three points

Figure 2.3: Here we show the magnitude of the field created by one,
two, and three points. A bright spot corresponds to a large magnitude
while a dark region indicates a smaller magnitude. In addition, we also
show the wavefronts which are approximately 0 radians.

where we have chosen the amplitude function A(x;xi) = 1/|x− xi| and
phase function ϕ(x;xi) = (2π/λ)|x− xi|. Simply put, there are sources
of waves located at various positions xi, known as point sources, whose
amplitude and phase vary as a function of distance from the point xi.
In addition to the magnitude of this summation, we also show the
wavefronts {x | ∠V (x) = 0}. We show examples of one, two, and three
sources of waves. In this figure, the background shading indicates the
magnitude of the complex wave, which varies in a somewhat compli-
cated fashion due to the interaction of the waves in the complex space,
along with the wavefronts indicated as solid lines.

With the intent of using our form of the complex wave function
u(x, t) within the scalar wave equation of Equation (2.10), we present
the following pair of derivatives:

∇2u(x, t) =
{
∇2U(x)

}
e−j2πνt, (2.15)

∂2u(x, t)

∂t2
= (j2πν)2U(x)e−j2πνt. (2.16)

Substituting Equation (2.15) and Equation (2.16) into Equation (2.10),
we can write the scalar wave equation in terms of the phasor,

∇2U(x) = − (2πν)
2 n

2

c2
U(x).

Letting k = 2πνn/c = 2π/λν be the wave number (where λν = c/(νn)
is the wavelength), we arrive at the Helmholtz equation.
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Definition 2.1 (Helmholtz Equation). Let the complex wave
equation be u(x, t) = U(x)e−j2πνt where x = [x, z]T ∈ R3 and
ν is optical frequency. The Helmholtz equation of the scalar field
U(x) is given by

∇2U(x) + k2U(x) = 0, (2.17)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator, and k =

2π/λ is the wave number.

2.2.3 Types of Waves

All complex wave functions taking the form of u(x, t) = U(x)e−j2πνt

where U(x) is twice differentiable will satisfy the Helmholtz equation.
Three forms that will be particularly useful to us are planar, spherical,
and parabolic waves:

Definition 2.2 (Planar wave). The scalar field of the planar
wave is

U(x) = A0e
−jkTx = A0e

−j(kxx+kyy+kzz), (2.18)

where k = [kx, ky, kz]
T is the wave vector such that k2x+k

2
y+k

2
z =

k2 and k = 2π/λ is the wave number. The constant A0 represents
the amplitude.

Definition 2.3 (Spherical wave). The scalar field U(r) of the
spherical wave is

U(r) =
A0

r
e−jkr, (2.19)

where r = |x| =
√
x2 + y2 + z2 is the radius between x and the

origin.

Definition 2.4 (Paraboloidal wave). The scalar field of a
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paraboloidal wave is given by

U(x) =
A0e

−jkz

z
e
−jk

(
|x|2
2z

)
. (2.20)

Suppose we have the case of a spherical wave emitting energy
as shown in Figure 2.4. As we consider the wavefronts of the phasor
increasingly further from the origin of the wave, we notice that the
spherical wave begins to look like a parabolic wave. Increasing our
distance further, we note the wave’s tendency towards appearing as a
plane wave. This approximate nature of a spherical wave turning into
a parabolic wave and then a planar wave will be a useful conceptual
and analytic tool for the purposes of this Chapter.

Figure 2.4: As a spherical wave propagates outwards, at a sufficient
distance it becomes suitably paraboloidal (or parabolic), and further
yet planar. We note that one can approximate a planar wave with
a parabolic one. These ranges are not mutually exclusive, but rather
the most appropriate approximation (in most cases) for the associated
wave at a distance.

2.2.4 Why Waves?

Thus far we have dedicated our energy towards describing the mathe-
matics behind wave motion in a general sense. There is nothing tying
it specifically to optics at this point! There are two ways in which one
may consider this reality, one more formally from Maxwell’s equations
and the other more intuitively through experiment.

Maxwell’s equations in differential form can be written as

∇×E = −∂B
∂t
, ∇×B = µ0

(
ϵ0
∂E

∂t
+ J

)
,

∇ ·E = ρ/ϵ0, ∇ ·B = 0.

(2.21)

As a first step towards developing the wave equation, we restrict our
analysis to a vacuum, thus finding the “pure” form of electromagnetic
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wave propagation undisturbed by outside forces. If we further define
ϵ0µ0 = 1/c2, this allows our equations (2.21) to take the form

∇×E = −∂B
∂t
, ∇×B =

1

c2
∂E

∂t
,

∇ ·E = 0, ∇ ·B = 0,
(2.22)

where c is the speed of light.
Through the use of the triple scalar product and BAC − CAB

[14] rule, we can obtain the wave equation. Starting with taking the
curl of the first equation in (2.22),

∇× (∇×E) = ∇×
(
−∂B
∂t

)
,

∇ (∇ ·E)−∇ ·∇E = − ∂

∂t
(∇×B) ,

∇2E
(a)
=

1

c2
∂2E

∂t2
,

where arriving at the LHS of (a) utilized the divergence property of the
field E in free space while the RHS used the definition of the curl of the
magnetic field. By symmetry, we can state the same equation for the
magnetic field B. We therefore present the following definition:

Definition 2.5 (Electromagnetic Wave Equation). The homo-
geneous, 3-dimensional form of the electromagnetic wave equation
is given by

∇2E− 1

c2
∂2E

∂t2
= 0, (2.23)

and predicts that an electromagnetic wave travels at the speed of
light – a constant c.

This suggests that electromagnetic radiation travels at a constant speed
c, the very same speed of light we are familiar with. Maxwell himself
suggested that light must be an electromagnetic wave [11], with ex-
perimental evidence supporting this assertion in the proceeding years.
Therefore, if we accept that light is electromagnetic radiation then it
may be modeled as a wave.

This represents a mathematical reason why light should be treated
as a wave. There are, however, more experimental reasons as to why we
may choose to do so. One of the most convincing experimental reasons
to model light as a wave is the phenomenon of diffraction.

35



CHAPTER 2. IMAGE FORMATION MODEL

Figure 2.5: (a) The physical system we will be analyzing which gives
rise to diffraction. An incident wave propagates toward the diffracting
screen. We are interested in describing the wave at the observation
plane. (b) Two possible diffraction patterns from [Top] a square aper-
ture and [Bottom] a circular aperture.

2.3 The Diffraction Problem

The primary concern of Chapter 2.3 is the phenomena of diffraction.
Diffraction is a clear case for the wave model and is seen most obviously
in the case of a wave that is incident upon a large, non-transmitting
screen with a small hole. The wave on the side opposite to that of the
incidence is said to demonstrate diffractive effects. We show the system
we will analyze to arrive at the mathematical description of diffraction
in Figure 2.5.

Due to the wave-like behavior, we will require the Helmholtz equa-
tion (Equation (2.17)) to describe it mathematically. Problems within
optics that arise from the Helmholtz equation are typically stated as
boundary problems: if we know a subset of values for U(x), we are
then interested in knowing the distribution of the field at another set
of locations. While the nature of the boundaries and the sufficient con-
ditions for problems to be well-posed (see [7]) are beyond the scope of
this book, they underlie the problems in the proceeding discussions.
We instead opt for a simpler introduction first and present the main
mathematical result afterward.

2.3.1 The Huygens-Fresnel Principle

The Huygens-Fresnel principle (HFP) is a natural choice in presenting
the intuition behind how light is modeled as a wave. We begin with
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the definition:

Definition 2.6 (Huygens-Fresnel principle). The propagation of
the wave follows two principles:

1. Sources of waves radiate outwards spherically;

2. Every point along any wavefront can be considered a sec-
ondary source, referred to as wavelets, which interact.

The Huygens-Fresnel principle tells us in simple terms how to begin
with a particular wave distribution on a surface and end with the dis-
tribution on a different surface. We visualize what happens to a plane
wave arriving at a diffracting screen in Figure 2.6. Here we can see the
secondary wavefronts cause the wave to “leak” beyond the shadow of
the screen.

Figure 2.6: The Huygens-Fresnel Principle states that the point source
radiates outwards spherically, and every point along the wavefront can
be considered as a secondary source.

Let us contrast the two forms of propagation models as shown in
Figure 2.7: ray optics and wave optics as described by the HFP. Ray
tracing would predict the pattern an observer would see to be the same
shape as the aperture, only rays that are propagating through the gap
will arrive on the observation plane. Furthermore, utilizing the fact
that rays travel in a straight line, we should expect to see a copy of
the aperture as an observer. The HFP instead predicts that some light
will leak out of the shadow of the aperture and cause the pattern to be
distributed over a larger area than that predicted by ray optics.

One may notice the rippling effects in the diffraction pattern. This
can be explained by the second rule of the HFP which states that the
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Ray optics Wave optics Ray optics Wave optics

(a) Circular aperture (b) Square aperture

Figure 2.7: A representation of the field on the observation plane as
predicted by ray tracing and the wave model. The ray optics solution
does not explain how the energy leaks out beyond the shadow of the
aperture, which is a mismatch from physical reality.

waves interact. This means that the waves may either constructively or
destructively interfere with one another. Using the concept of phasors
as before, we can understand this interference to arise from the real and
imaginary components, thus contributing interference. Furthermore,
the distance between the peaks in the diffraction pattern will be directly
related to the wavelength of the incident light, a point we will present
later in this Chapter.

The preceding discussion, of course, contains no mathematical
concepts though it is often useful to have the Huygens-Fresnel principle
in mind when solving problems of this nature. It is a helpful guiding
tool that can aid in the visualization of propagation through various
objects, and can even be used to explain refraction, phase perturbations
due to atmospheric turbulence, and so on.

2.3.2 Rayleigh-Sommerfeld Diffraction

One of the mathematical approaches which describe diffractive effects
is known as the Rayleigh-Sommerfeld diffraction integral, with a closely
related alternative being the Fresnel-Kirchhoff diffraction integral [11].
The Rayleigh-Sommerfeld approach is often regarded as the most rigor-
ous approach to formulating the solution to the diffraction effect that
is in agreement with Maxwell’s equations. The formulation seeks to
describe a wave after incidence upon a diffracting screen. The problem
is easily stated, yet the details involved are beyond the scope of this
book. We would suggest the interested reader to Goodman [11] for an
easy-to-follow treatment, and those who are interested in the rigorous
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development to Born and Wolf [7].
We depict the geometry of the problem in Figure 2.8. As in the

case of the HFP, we wish to write the wave in the observation plane as
a superposition of the secondary wavelets. The Rayleigh-Sommerfeld
diffraction integral does just this, it describes the phasor at point x due
to the field at the aperture is given by the integration over the aperture
Σ, which is stated in Theorem 2.1.

Theorem 2.1 (Rayleigh-Sommerfeld diffraction). The wave ob-
served at a point x after diffracting through a surface Σ is de-
scribed by

U(x) =
1

jλ

∫∫
Σ

U(ξ)
exp {jkr}

r
cos θ dξ, (2.24)

where Σ is the source surface composed of many individual point
sources, θ as the angle between the surface normal and the vector
r pointing from ξ to x (with r = |r|), and k = 2π/λ as the
wavenumber.

While Equation (2.24) is provided without proof, it can be un-
derstood somewhat intuitively. In fact, it resembles a mathematical
form of the Huygens-Fresnel principle! The Rayleigh-Sommerfeld in-
tegral describes the wave at a point x as a superposition of spherical
waves which are weighted by their source phasor amplitudes, similar
to the case of secondary wavelets in the HFP. Due to the fact that
the spherical wave is modeled as a complex exponential, we will have
our interaction as required. There is additionally a directivity constant
which can be understood to account for the direction of propagation
of the original wave. The scaling constant 1/(jλ) is a technical point
that can be explained rigorously via the Rayleigh-Sommerfeld theory
[11]. For the purpose of this book, we can treat the term as something
that comes out of the derivative of the exponential ejkr.

2.3.3 Fresnel Diffraction

The Rayleigh-Sommerfeld diffraction in Theorem 2.1 is a useful result
for our specific configuration of Figure 2.5. This result can describe the
wave along any parallel plane on the right side of the diffracting screen.
However, this ability comes at a cost: the complicated behavior of the
wave near the screen will make finding general closed forms solutions
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Figure 2.8: When there are more than two points in the object plane,
the observed field at position x will be the superposition of the fields
emitting from the source plane Σ.

challenging. As a result, it will prove to be analytically intractable in
most situations of interest. To make sense of the result and to derive
something we can apply to image formation we need a set of approx-
imations. The first approximation we will introduce is known as the
Fresnel approximation. The Fresnel approximation takes inspiration
from the fact that at a sufficient distance, a spherical wave can be ap-
proximated as a parabolic wave. Therefore, if we are only interested in
describing the plane at a distance sufficiently far away from the screen,
we may be able to obtain a more useful result via an approximation of
the general Rayleigh-Sommerfeld result.

To begin our approximate analysis, we first note that cos θ = z/r
in Equation (2.24), thus it may instead be written as

U(x) =
z

jλ

∫∫
Σ

U(ξ)
exp{jkr}

r2
dξ. (2.25)

We first consider the approximation for r2. By using Taylor’s expan-
sion,

√
1 + b ≈ 1 + 1

2b − 1
8b

2 + . . .. Substituting this into the distance
r, we can show that

r =
√
z2 + |x− ξ|2 = z

√
1 +

∣∣∣∣x− ξz
∣∣∣∣2 ≈ z

[
1 +

1

2

∣∣∣∣x− ξz
∣∣∣∣2
]
≈ z,

(2.26)

if |x− ξ|2 ≪ z2.
With additional calculations by substituting Equation (2.26) into
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Equation (2.24), we can show that

U(x) =
z

jλ

∫∫
Σ

U(ξ)

exp

{
jkz

[
1 + 1

2

∣∣∣x−ξz ∣∣∣2]}
z2

dξ

=
ejkz

jλz

∫∫ ∞
−∞

UΣ(ξ) exp

{
jk

2z
|x− ξ|2

}
dξ, (2.27)

where UΣ(ξ) is the incident field restricted to the aperture, defined as

UΣ(ξ) =

{
U(ξ), ξ ∈ Σ,

0, otherwise.

Note that we didn’t utilize the approximation of Equation (2.26) in the
exponential term in (2.27). This is for two reasons: (1) it is multiplied
by the wavenumber k which is typically a large value, certainly in the
case of the visible spectrum; (2) a small change in phase will cause a
potentially significant change in the exponential. Thus, it is hard to
justify the approximation in this particular case [11].

Expanding the quadratic term inside the exponent of Equation (2.27)
allows us to write

|x− ξ|2 = |x|2 − 2xT ξ + |ξ|2. (2.28)

Substituting Equation (2.28) into Equation (2.27), we can show that
the observed field is

U(x) =
ejkz

jλz
ej

k
2z |x|

2

∫∫ ∞
−∞

{
UΣ(ξ)e

j k
2z |ξ|

2
}
e−j

2π
λzx

T ξdξ. (2.29)

An important observation here is that the integration is the Fourier
transform of the field UΣ(ξ)e

j k
2z |ξ|

2

. Splitting the terms in UΣ(ξ)e
j k
2z |ξ|

2

,
it can be seen that the field is composed of three parts: (1) the inci-
dent field U(ξ), (2) the aperture Σ, and a quadratic phase distortion

ej
k
2z |ξ|

2

. This result is known as the Fresnel diffraction integral.

Theorem 2.2. The Fresnel diffraction integral is defined as

U(x) =
ejkz

jλz
ej

k
2z |x|

2

∫∫ ∞
−∞

{
UΣ(ξ)e

j k
2z |ξ|

2
}
e−j

2π
λzx

T ξdξ, (2.30)

where UΣ(ξ) is the incident field passing through a finite aperture
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Σ. Equivalently, Equation (2.30) can be written as

U(x) =
ejkz

jλz
ej

k
2z |x|

2

Fourier
{
UΣ(ξ)e

j k
2z |ξ|

2
} ∣∣∣∣

f= x
λz

, (2.31)

where the Fourier frequencies are evaluated at f = x/(λz).

2.3.4 Fraunhofer Approximation

The Fresnel approximation is valid when we may suitably approximate
the emergent waves as parabolic. For propagation distances even fur-
ther away we may instead choose to use planar waves, allowing us to
further simplify the result of Fresnel diffraction. With the approxima-
tion of planar waves, the quadratic phase function in Equation (2.30)
can be approximated as

ej
k
2z |ξ|

2 ≈ 1.

When such an approximation is valid, the Fresnel diffraction integral
is simplified to

U(x) =
ejkzej

k
2z |x|

2

jλz

∫∫ ∞
−∞

UΣ(ξ)e
−j 2π

λzx
T ξ dξ, (2.32)

which we recognize as the Fourier transform of the incident field UΣ(x).
This integral is known as the Fraunhofer diffraction integral.

Theorem 2.3. The Fraunhofer diffraction integral is defined as

U(x) =
ejkzej

k
2z |x|

2

jλz

∫∫ ∞
−∞

UΣ(ξ)e
−j 2π

λzx
T ξdξ, (2.33)

or equivalently, in terms of Fourier transform:

U(x) =
ejkzej

k
2z |x|

2

jλz
Fourier

{
UΣ(ξ)

}∣∣∣∣
f= x

λz

. (2.34)

The Fraunhofer diffraction integral presents an important physical
result. The behavior of a wave incident upon a diffracting screen can be
modeled as a device that is closely related to the Fourier transform of
the input wave (specifically, the part which passes through the screen).
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Furthermore, since the Fourier transform is well-studied, we may apply
standard Fourier results and intuitions to these systems. We present
two examples of Fraunhofer patterns below.

Example. (Square Aperture) Suppose that the incident field is
given by the square aperture

UΣ(ξ) = rect

(
ξ

2wX

)
rect

(
η

2wY

)
, (2.35)

where wX and wY are the half-widths of the aperture. Using
Equation (2.34), the Fraunhofer diffraction pattern is given by

U(x) =
ejkzej

k
2z |x|

2

jλz
Fourier

{
UΣ(ξ)

}∣∣∣∣
fx=

x
λz ,fy=

y
λz

.

The Fourier transform of UΣ(ξ) is

Fourier

{
rect

(
ξ

2wX

)
rect

(
η

2wY

)}
= A sinc(2wXfX)sinc(2wY fY ),

where A = 4wXwY . Thus, the Fraunhofer diffraction pattern is

U(x) =
ejkzej

k
2z |x|

2

jλz
A sinc

(
2wXx

λz

)
sinc

(
2wY y

λz

)
, (2.36)

where we substituted fX = x/(λz) and fY = y/(λz). □

Example. (Circular Aperture) Consider the circular aperture
function of aperture radius D:

UΣ(ρ) = circ
( ρ
D

)
=


1, ρ < D,
1
2 , ρ = D,

0, otherwise.

(2.37)

where ρ = |ξ| =
√
ξ2 + η2 is the radius in the object plane.

Since the circular aperture is circularly symmetric, we perform the
calculation in the polar coordinate. The Fraunhofer diffraction
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pattern is then given by the Fourier-Bessel transform Bessel:

U(r) =
ejkz

jλz
exp

{
j
kr2

2z

}
Bessel

{
circ

( ρ
D

)}∣∣∣∣∣
f=r/(λz)

,

where r = |x| =
√
|x|2 is the radius of the coordinate in the image

plane. The Fourier-Bessel transform of the circular aperture is

Bessel
{
circ

( ρ
D

)}
= D2 J1(2πDf)

Df
= 2·πD2·J1(2πDf)

2πDf
. (2.38)

Substituting f = r/(λz) into Equation (2.38) yields

U(r) =
ejkz

jλz
exp

{
j
kr2

2z

}
· (πD2) ·

[
2
J1(2πDr/(λz))

2πDr/(λz)

]
︸ ︷︷ ︸

jinc(r)

, (2.39)

where J1 is the Bessel function of the first kind (first order). The
Fraunhofer diffraction pattern is shown in Figure 2.9. □

Figure 2.9: Fraunhofer diffraction pattern of a circular aperture. Notice
that the spread of the diffraction pattern grows as the wave propagates.

2.3.5 Diffraction Patterns

Thus far, we have developed a way of describing the field as a result
of incidence with a diffracting screen. If we were to place a sensor to
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detect the diffracted wave, we would not observe the complex wave
directly. Instead, we would see the power per unit area.

The notion of power in our system is a straightforward consider-
ation by the fact that our waves are modeled as sinusoidal. Therefore,
the power at a position x can be written as

P (x) ∝ E[|A(x) cos(2πνt+ θ(x))|2],
∝ |A(x)|2/2,

where the proportionality is a result of the quantum efficiency and
other physical properties of the system and E[·] denotes the statistical
expectation. We will return to the reason for this expectation in a
later subsection, for now we can just consider it as a time averaging
operation. Ignoring the physical quantities defining the power, we de-
fine a function known as the intensity of a wave to be proportional to
the power [11]. The intensity is given as

I(x) = E[|U(x) exp{−j2πνt}|2],
= |U(x)|2. (2.40)

Instead of referring to the power directly, we typically prefer intensity
for its simplicity. Furthermore, we drop the expectation in (2.40) due
to the time invariance of the phasor.

This result implies that the observed pattern on a screen or sen-
sor will simply be proportional to the magnitude square of the phasor
field. Therefore, our discussions resulting in Fresnel and Fraunhofer
diffraction can be applied to imaging scenarios through the application
of Equation (2.40).

It is useful to note that in the above discussion, we have used the
term intensity instead of irradiance, with the former term being the
one used in Goodman’s book. The units that we wish to describe are
[W/m2], whereas sometimes the term intensity corresponds to units
[W/m2/sr] where sr is known as a steradian. In this book we will use
the term intensity to refer to power per unit area, thus being identical
to the irradiance. This is done to be in coordination with Goodman
and to adopt the terminology most often used by the computer vision
and image processing communities.

2.3.6 Diffraction Limit

The Fraunhofer diffraction pattern derived for a circular aperture Equa-
tion (2.39) plays a significant role in imaging. If we consider the inten-
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sity of the field, we can show that

I(r) = |U(r)|2 =

(
2πD2

λz

)2
[
2
J1
(
2πDr
λz

)
2πDr
λz

]2
. (2.41)

The intensity distribution I(r) is called the Airy disc. The shape of the
Airy disc is shown in Figure 2.10. We marked the width of the central
lobe of the Airy disc, which is measured between the two zero-crossings:

d = 1.22
λz

D
. (2.42)

Figure 2.10: The width of the central lobe of the Airy disc is given by
d = 1.22λz/D.

Suppose that there is an aperture containing two pinholes where
the centers are separated by a distance δ. As the wave leaves these two
pinholes, two diffraction patterns are generated. If δ is large, we expect
that the two diffraction patterns barely overlap, and so we can resolve
the two points. However, as δ reduces, we will eventually reach the
point where the two diffraction patterns blend into each other to the
point of being indistinguishable. Between these two extremes, there
exists a critical state which corresponds to the minimum separation
where the two patterns are still able to be resolved. At this threshold,
we say that we have reached the Rayleigh criteria. The situation is
illustrated in Figure 2.11.

Mathematically, the minimum resolvable separation is defined at
the point of half of the main lobe width,

δ = 0.61
λz

D
. (2.43)

46



2.4. LENSES

(a) Rayleigh criteria (b) unresolved (c) resolved

Figure 2.11: As the wave leaves from a screen consisting of two pin-
holes, the superposition of the diffracted waves will make the two points
unresolvable. The critical separation of the two pinholes is called the
Rayleigh criteria.

The factors that define Equation (2.43) are the wavelength λ, the prop-
agation path z, and the aperture radiusD. A short wavelength λ causes
the spread of the diffraction to be small. Thus, we can resolve the two
points with a small δ. A long propagation path z increases the spread
of the diffraction pattern. Thus, the two points are better resolved if
z is small. Due to the Fourier relationship of diffraction, a large aper-
ture will shrink the size of the diffraction pattern, which will decrease
δ. The opposite case similarly increases δ through the same Fourier
scaling relationship.

This leads us to introduce the numerical aperture (NA) as NA =
D/z. The numerical aperture allows us to write the Rayleigh criteria
as

δ = 0.61
λ

NA
. (2.44)

Specifically, the numerical aperture measures the half-angle subtended
by the exit pupil when viewed from the image plane. NA is large when
z ≪ D.

2.4 Lenses

An imaging system almost always contains a lens, and with good rea-
son. Previously, our discussion of waves has taken place with diffracting
screens and observations at long distances. This feels different from the
case of an imaging system where we are interested in relatively short
distances. Fortunately, the way a thin lens affects propagation will
allow us to use our previous results.
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2.4.1 Phase Distortion by a Lens

A lens is typically composed of glass, thus having a higher index of
refraction relative to free space. As a result of this relative increase,
the speed of light is attenuated according to the index of refraction.
Consider a lens with a shape outlined in Figure 2.12. We denote the
thickness of the lens at coordinate ξ as ∆(ξ), and the maximum thick-
ness as ∆0. The phase delay ϕ(ξ) caused by the lens consists of two
parts: the high refractive index region provided by the lens and the
free space region which is anywhere outside the lens. The sum of the
two terms gives the phase delay ϕ(ξ)

ϕ(ξ) =
2π

λ
n∆(ξ)︸ ︷︷ ︸

lens

+
2π

λ
[∆0 −∆(ξ)]︸ ︷︷ ︸

free space

, (2.45)

where n is the refractive index of the lens.
At this point, we have defined the function ϕ(ξ), which we intend

to apply to the wave. If we wish to apply it to the input field, i.e. the
wave incident upon the lens surface, we face the problem of bending
through the lens. However, if we consider the “rays” to enter and leave
without deviating from their original path of propagation, then we can
simply write the delay in the wave to be a function of only the phase
delay at a point ξ.

This is the model of a thin lens, which is an idealized scenario
in which the lens is thin enough such that any refractive effects can
be approximated by the thickness. Continuing with our usage of the
complex representation, we take the complex exponential of ϕ(ξ) in
Equation (2.45), giving us the lens transformation:

tℓ(ξ) = exp {jϕ(ξ)} = exp {jk∆0} exp {jk(n− 1)∆(ξ)} . (2.46)

When an incident field Uℓ(ξ) reaches the lens, the lens changes its phase
by multiplying Uℓ(ξ) with tℓ(ξ):

U ′ℓ(ξ) = Uℓ(ξ)P (ξ)tℓ(ξ), (2.47)

where P (ξ) is the pupil function such that

P (ξ) =

{
1, ξ is inside the aperture,

0, otherwise.
(2.48)

The resulting field U ′ℓ(ξ) is located immediately behind the lens, as
shown in Figure 2.12.
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Figure 2.12: The geometry of a lens. As a ray travels from the left to
the right, the radius of the left surface is denoted as R1, whereas the
radius of the right surface is denoted as R2.

The lens in Figure 2.12 can be modeled as an intersection of two
circles plus a constant, with radii R1 and R2 for left and right circles
accordingly. Assuming ξ is sufficiently smaller than the two radii, the
paraxial approximation allows us to write the thickness of the lens as
the parabolic function [11]:

∆(ξ) ≈ ∆0 −
|ξ|2
2

(
1

R1
− 1

R2

)
. (2.49)

Combined with the previous definitions, if we define the focal length
f of a lens to be

1

f
= (n− 1)

(
1

R1
− 1

R2

)
, (2.50)

we can write Equation (2.47) as

U ′ℓ(ξ) = Uℓ(ξ)P (ξ) exp

{
−j k

2f
|ξ|2
}
, (2.51)

where we have removed any constant phase terms.
As in the case of our analysis of diffraction, we are additionally

interested in how the wave behaves as it moves away from the lens.
For this particular problem, we are concerned with the distribution of
the field at the plane of distance z = f . Application of Fresnel integral
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results in

Uf (u) =
ejkf

jλf
ej

k
2f |u|

2
∫∫ ∞
−∞

{
U ′ℓ(ξ)e

j k
2f |ξ|

2
}
e−j

2π
λf ξ

Tu dξ

=
ejkf

jλf
ej

k
2f |u|

2
∫∫ ∞
−∞

Uℓ(ξ)P (ξ)e
−j 2π

λf ξ
Tu dξ. (2.52)

Comparing with Equation (2.33), we realize that Equation (2.52) is
the Fraunhofer diffraction pattern of the windowed field incident on
the lens.

This is a somewhat surprising result. In our previous discussion
of diffraction, the Fraunhofer pattern without a lens occurred a very
far distance away! Now, it occurs at the focal plane. This highlights
the key mathematical simplification by a lens, specifically an idealistic
thin lens.

2.4.2 Impulse Response of a Lens

In the previous subsection, we discussed how the phase of an incident
wave is transformed by a lens. In this subsection, we take a step fur-
ther to study how the wave emitted from a point source at a specified
distance is transformed by a lens. To analyze such an impulse re-
sponse, one way is to derive the field observed at various stages as in
Figure 2.13.

Figure 2.13: Configuration for studying the impulse response of a lens,
with the “impulse” being a field we specify at a distance.

Starting from the left-hand side of Figure 2.13, we consider a point
source as the input field Uo. A point source is described mathematically
by a delta function:

Uo(x) = δ(x− u), (2.53)
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where u specifies the center of the delta function δ(·). Through operator
notation, we wish to present the result of

Ui(x) = Fresnel[z2] {tℓ(ξ)P (ξ)Fresnel[z1]{δ(x− u)}} , (2.54)

with Fresnel[z]{·} denoting Fresnel diffraction of {·} evaluated at a
distance z. For a detailed derivation, we would point the reader towards
Goodman’s Fourier Optics [11]. We do, however, highlight the fact
that within this derivation, the assumption most relevant to us is the
assumption that the lens law

1

z1
+

1

z2
=

1

f
, (2.55)

is satisfied. This effectively assumes that the object is being focused
properly.

With simplifications as fully elaborated by [11], Equation (2.54)
can be simplified to

Ui(x) ≈
1

λ2z1z2

∫∫ ∞
−∞

P (ξ)

× exp

{
−jk

[(
u

z1
+
x

z2

)
ξ +

(
v

z1
+

y

z2

)
η

]}
dξ. (2.56)

Defining the magnification factor (where the minus sign accounts for
the image inversion)

M = −z2/z1, (2.57)

it follows that

Ui(x)︸ ︷︷ ︸
h(x,u)

≈ 1

λ2z1z2

∫∫ ∞
−∞

P (ξ) exp

{
−j 2π

λz2
(x−Mu)T ξ

}
dξ. (2.58)

This result leads us to define the impulse response of a lens.

Theorem 2.4 (Impulse Response of a Lens). Consider the op-
tical setup shown in Figure 2.13. If the input is Uo(x) = δ(x−u),
the output is the impulse response, defined as

h(x,u) ≈ 1

λ2z1z2

∫∫ ∞
−∞

P (ξ) exp

{
−j 2π

λz2
(x−Mu)Tu

}
dξ.

(2.59)
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where M = −z2/z1 and P (u) is the aperture.

2.4.3 The Amplitude Spread Function

The impulse response in Equation (2.59) is so named because h(x,u)
is the outcome of the optical system with a lens when the input Uo(u)
is the delta function. For general input Uo(u), the output is given by

Ui(x) =

∫∫ ∞
−∞

h(x,u)Uo(u) du. (2.60)

We can think of Equation (2.60) as the superposition of the incident
field Uo at different locations u weighted by h(x,u). To make the
equation useful, we present a sequence of normalization so that Equa-
tion (2.60) becomes a convolution.

Inspecting Equation (2.59), we consider a change of variables ũ =
Mu, also noting h(x,u) may be written as h(x − ũ). Without loss
of generality, we may set ũ = 0, resulting in the definition of the
amplitude spread function (ASF):

Theorem 2.5 (Amplitude spread function). Consider the opti-
cal setup shown in Figure 2.13. The amplitude spread function of
the system is

h(x) =
A

λz2

∫∫ ∞
−∞

P (ξ) exp

{
−j 2π

λz2
xT ξ

}
dξ, (2.61)

which is the Fourier transform of P (ξ) evaluated at frequencies
( x
λz2

, y
λz2

) (multiplied with a constant) and with A = 1/(λz1),
though often for notational convenience, we can set the constant
A
λz2

to unity. The resulting field formed in the image plane is

Ui(x) = h̃(x)⊛ Ug(x), (2.62)

where ⊛ denotes the 2D convolution, with h̃(x) = 1
M h(x) and

Ug(ũ) =
1
|M |Uo

(
ũ
M

)
.

The result in Equation (2.62) is significant for a few reasons:

• The incident field Ug(ũ) is related to what we will soon introduce
as the ideal image produced by geometrical optics. Except for
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the magnification factor |M |, there are no other distortions caused
by the optics.

• In the presence of a finite-aperture lens, Equation (2.62) implies
that diffraction will cause a diffraction-limited blur via the con-
volution with h(x).

• To eliminate the effect of the diffraction-limited blur, one can
make the aperture much bigger than the image sensor. According
to Equation (2.61), a pupil function with an infinitely large radius
will turn h(x) to the delta function. In this case, the observed
field Ui in Equation (2.62) is the geometrical optics result Ug.

• The ASF is an intrinsic property of an optical system. It is de-
termined by the wavelength λ, propagation distance z2, and the
geometry of the aperture P (x). For example, a square aperture
has a different ASF compared to a circular aperture.

2.5 Image Formation

Thus far discussions have primarily been about the electromagnetic
field. In Chapter 2.5, we will further discuss how images are formed.
Towards the end of Chapter 2.5, we will introduce the concepts of
amplitude transfer function and optical transfer function, two major
concepts within Fourier optics.

2.5.1 Coherent and Incoherent Imaging

The images we observe (by our eyes or by image sensors) are the in-
tensities of the electromagnetic fields. Using the definitions of Ui(x) in
Equation (2.62) of Theorem 2.5 and intensity in Equation (2.40), we
consider the image intensity written in terms of the source phasor:

Ii(x) = E
[
|Ui(x)|2

]
= E

[
|h̃(x)⊛ Ug(x)|2

]
= E

[∣∣∣∣∫ h̃(x− ũ)Ug(ξ) dũ

∣∣∣∣2
]

=

∫∫
h̃(x− ũ1)h̃

∗(x− ũ2)E
[
Ug(ũ1)U

∗
g (ũ2)

]
dũ1dũ2, (2.63)

where E[·] denotes the expectation and (·)∗ denotes the complex con-
jugate. For the proceeding discussions, we will no longer consider the
waves to be fully deterministic; the waves we will now consider will
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be stochastic in nature. Let us ask: where does the randomness come
from?

A distributed light source generates many waves simultaneously.
Depending on the type of the light source, the instantaneous phases
of the waves are correlated to different extents. The correlation of the
phases is described through the concept of coherence. Coherence can
be measured in time, space, and spectrum. For the purposes of this
book, we shall focus on spatial coherence. We are mostly interested
in two types of light sources: coherent sources and incoherent sources.
Figure 2.14 shows an example of both.

Figure 2.14: A coherent source generates trains of continuous
waves where the phases are completely correlated. Note, however,
that two correlated waves do not necessarily have the same ini-
tial values. They can be 180◦ out of phase but correlated. An
incoherent source generates waves where the instantaneous phases
are uncorrelated. One way to understand them is to visualize the
waves as functions with discontinuous phases. Source: [https:
//www.schoolphysics.co.uk/age16-19/Wave%20properties/Wave%

20properties/text/Coherent%20and%20incoherent/index.html

The core difference between a coherent source (and thus a coher-
ent illumination) and an incoherent source needs to be traced back to
how the waves are generated. If we have a laser exciting electrons to
emit energy synchronously, the resulting electromagnetic fields will be
trains of continuous waves with a constant phase profile as shown in
Figure 2.14. (Note, however, that the initial values of the phases do
not need to be identical. For example, one wave can be 180◦ out of
phase with another wave but they propagate at the same frequency
and direction.) We say that such illumination is coherent because the
phases of the two waves are completely correlated — if we know how
the first wave propagates, we also know how the other waves propagate
(assuming that we know the initial phases.) A coherent illumination is
obtained when the waves are originated from the same source.

An incoherent illumination has the opposite behavior. Often-
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times, an incoherent illumination is obtained when the source produces
waves randomly. One way to think of these randomly generated waves
is that they are “broken trains of waves” instead of a continuous wave.
Many light sources such as a tungsten bulb generate waves in such a
way because electrons at different parts of the tungsten emit energy
differently. When waves are emitted randomly in an independent fash-
ion, the instantaneous phases are uncorrelated. Most of our everyday
experience is illuminated by such incoherent sources.

Returning to Equation (2.63), we say the spatial coherence of two
waves is measured using the mutual intensity:

Jg(ũ1, ũ2) = E
[
Ug(ũ1)U

∗
g (ũ2)

]
. (2.64)

The way to understand Equation (2.64) is to treat the two incident
fields Ug(ũ1) and U∗g (ũ2) as random variables drawn spatially from
the same random process Ug. The expectation in Equation (2.64),
which applies to the product of the two terms, is the correlation of the
two samples.1

As we have stated, coherent illumination exhibits perfect correla-
tion in the waves. Given that the complex envelope of a wave may be
written Ug(x) = Ag(x) exp{−jϕ(x)}, we may say that for a coherent
wave the following is true:

ϕ(ũ1)− ϕ(ũ2) = ϕ(ũ2 − ũ1). (2.65)

In this case, the phase difference is a deterministic function of its sepa-
ration. The expectation accordingly is dropped, with mutual intensity
function

Jg(ũ1, ũ2) = Ag(ũ1)Ag(ũ2) exp{jϕ(ũ2 − ũ1)},
= Ug(ũ1)U

∗
g (ũ2). (2.66)

Substituting Equation (2.66) in Equation (2.63), Ii(x) becomes

Ii(x) =

∫∫
h̃(x− ũ1)h̃

∗(x− ũ2)Ug(ũ1)U
∗
g (ũ2)dũ1dũ2

=

∣∣∣∣∫∫ h̃(x− ũ1)Ug(ũ1) dũ1

∣∣∣∣2 =
∣∣∣h̃(x)⊛ Ug(x)

∣∣∣2 . (2.67)

1For readers who are less familiar with random processes, we recall that the auto-
correlation function RX(ξ1, ξ2) of a random process X(ξ) is defined as RX(ξ1, ξ2) =
E[X(ξ1)X(ξ2)]. The two instants X(ξ1) and X(ξ2) are two random variables; they
may or may not be correlated. Nevertheless, the joint expectation E[X(ξ1)X(ξ2)] is
well-defined. Mapping the 1D random process X(ξ) to a 2D random process Ug(ξ),
Jg is therefore the autocorrelation function of Ug .
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Therefore, for coherent light sources, the observed image Ii(x) is the

magnitude square of the convolved signal h̃(x)⊛Ug(x). Compared with
Equation (2.63), we notice that the only difference is the removal of the
expectation operator E[·].

Theorem 2.6 (Coherent Image Formation). If the light source
is coherent, then the observed image Ii(x) is

Ii(x) =
∣∣∣h̃(x)⊛ Ug(x)

∣∣∣2 . (2.68)

When the source is incoherent, Ug(x) will be an independent ran-
dom process. Therefore, two spatial samples Ug(ũ1) and U∗g (ũ2) are
two independent random variables. The mutual intensity function is
then given by

Jg(ũ1, ũ2) = Ag(ũ1)Ag(ũ2)E[exp{j(ϕ(ũ2)− ϕ(ũ1))}]. (2.69)

Further assuming that the phase function is uniformly distributed as
ϕ(x) ∼ [0, 2π), we can show that

Jg(ũ1, ũ2) =

{
Ig(ũ1) if ũ1 = ũ2,

0, otherwise,

= Ig(ũ1)δ(ũ1 − ũ2), (2.70)

where we defined
Ig(ũ1)

def
= E

[
|Ug(ũ1)|2

]
. (2.71)

In other words, Jg(ũ1, ũ2) is either Ig(ũ1) (when the coordinates ũ1

and ũ2 coincide) or zero (when the coordinates are different). Substi-
tuting Equation (2.70) in Equation (2.63), we show that

Ii(x) =

∫∫
h̃(x− ũ1)h̃

∗(x− ũ2)
[
Ig(ũ1)δ(ũ1 − ũ2)

]
dũ1dũ2

=

∫∫
|h̃(x− ũ1)|2Ig(ũ1)dũ1 =

∣∣∣h̃(x)∣∣∣2 ⊛ Ig(x). (2.72)

Therefore, the observed image is the convolution of
∣∣∣h̃(x)∣∣∣2 and |Ug(x)|2.
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Theorem 2.7 (Incoherent Image Formation). If the light source
is incoherent, then the observed image Ii(x) is

Ii(x) =
∣∣∣h̃(x)∣∣∣2 ⊛ Ig(x). (2.73)

Equation (2.73) describes a fundamental relationship we will consider
throughout the course of this book. This equation describes the rela-
tionship between the input field’s intensity and the output fields inten-

sity through the quantity
∣∣∣h̃(x)∣∣∣2, which we refer to as the point spread

function (PSF).

2.5.2 Imaging as a Space-Invariant System

The PSF brings us back to our intent which was stated towards the
beginning of this Chapter, to write an imaging system with a lens in a
standard LSI fashion. So much of computer vision and image process-
ing takes place using incoherent imaging, thus the PSF represents the
quantity that will describe a majority of imaging systems of interest to
the average computer vision researcher. Furthermore, the goal of Chap-
ter 2 will be to develop the proper background to properly describe a
turbulent PSF.

We now wish to interpret Equation (2.73) beginning with recalling
Equation (2.61):

h(x) =
A

λz2

∫∫ ∞
−∞

P (ξ) exp

{
−j 2π

λz2
xT ξ

}
dξ,

and h(x) =Mh̃(x). We can observe this result is merely the Fraunhofer
pattern Equation (2.61) evaluated at distance at z2 and with leading
complex terms removed. Equivalently, we may write this using the
Fourier transform as

h(x) =
A

λz2
Fourier

{
P (ξ)

}∣∣∣∣
f= x

λz2

. (2.74)

Examining Equation (2.73), we may then think of incoherent image
formation in the following way. First, we form the geometric optics
predicted image. This is simply ray tracing; each point will map to a
single point on the imaging plane with no effects by diffraction. Second,
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(a) Two imaging systems (b) Large aperture (c) Small aperture

Figure 2.15: If we have a geometric image such as a perfect intensity
representation of Newton (a), two imaging systems will view it differ-
ently. (b) A larger aperture will produce a smaller PSF while (c) a
small aperture produces a larger PSF.

we take this geometrically predicted image and blur it according to the
magnitude-squared diffraction pattern.

A typical lens-aperture system blurs the “ideal” image by a diffrac-
tion kernel. Mathematically, we may write the image formation by a
perfectly in-focus system as

Ii(x) = |Fourier{P (ξ)}|2 ⊛ Ig(x).

We will typically leave off such terms which correspond to the resizing
of the Fourier transform for brevity as this convolution should be un-
derstood to be done according to the proper system parameters. This
accounts for the diffraction limit by the blur acting as a low pass filter.
Due to the scaling property of the Fourier transform, a larger aperture
corresponds to a smaller blur, which we present a visualization of this
in Figure 2.15.

This leads us to consider the case in which the imaging system
is not perfectly in-focus. An assumption within our development of
Equation (2.73) is that our system is focused, assuming that lens law
(see Equation (2.55)) was satisfied. Let us remove this assumption,
instead assuming there is a slight focusing error such that

1

z1
+

1

z2
− 1

f
= ϵ. (2.75)

The resulting impulse response will then be given by [11]

h(x) =
A

λz2

∫∫ ∞
−∞

P (ξ) exp

{
j
kϵ

2
|ξ|2
}
exp

{
−j 2π

λz2
xT ξ

}
dξ. (2.76)
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Using this in place of our derivation for incoherent imaging, the image
will then be formed according to

Ii(x) = |Fourier{P (ξ)ejkϵ|ξ|
2/2}|2 ⊛ Ig(x).

More generally, we may write

Ii(x) = |Fourier{P (ξ)ejkϕ(ξ)}|2 ⊛ Ig(x), (2.77)

where ϕ(ξ) gives the path-error in meters. We will return to this con-
cept in more detail for the purposes of imaging through atmospheric
turbulence.

2.5.3 Amplitude Transfer Function

The image formation equations for a coherent system in Theorem 2.6
and an incoherent system in Theorem 2.7 have one thing in common:
they are both expressed using a convolution. The underlying math-
ematical assumption we made is that the image formation process is
spatially invariant and so the system is determined by the impulse
response. For such a system, it is also common to describe image for-
mation in the Fourier domain. To see how this can be made possible,
we define

Gg(f)
def
= Fourier{Ug(x)} =

∫ ∞
−∞

Ug(x) exp
{
−j2πfTx

}
dx

Gi(f)
def
= Fourier{Ui(x)} =

∫ ∞
−∞

Ui(x) exp
{
−j2πfTx

}
dx,

where f = [fX , fY ] is the frequency. In addition, we define the ampli-
tude transfer function to be the Fourier transfer of the ASF:

Definition 2.7 (Amplitude transfer function). The amplitude
transfer function is

H(f)
def
= Fourier{h(x)} =

∫ ∞
−∞

h(x) exp
{
−j2πfTx

}
dx.

For coherent imaging systems, the observed field is given by (see
Equation (2.62))

Ui(x) = h(x)⊛ Ug(x), (2.78)
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where we have dropped the constant phase terms. Taking the magni-
tude squares on both sides, we obtain

Ii(x) = |h(x)⊛ Ug(x)|2. (2.79)

Therefore, for coherent illumination, the observed intensity is the mag-
nitude square of the convolution.

Going back to Equation (2.78), the standard property of the
Fourier analysis tells us that

Gi(f) = H(f)Gg(f). (2.80)

The amplitude transfer function, according to Equation (2.61) is there-
fore

H(f)
def
= Fourier

{
A

λz2

∫ ∞
−∞

P (ξ) exp

{
−j 2π

λz2
xT ξ

}
dξ

}
=

∫ ∞
−∞

{
A

λz2

∫ ∞
−∞

P (ξ)e−j
2π
λz2

xT ξ dξ

}
e−j2πf

Tx dx

which is nothing but taking Fourier transform twice. It is not difficult to
show that a function f(x) transformed twice by the Fourier transform
is the flipped version f(−x). Therefore,

H(f) = P (−λz2f) = P (λz2f),

where we ignored the constant A/(λz2) and used the property of a sym-
metry circular pupil function that P (x) = P (−x). Therefore, the am-
plitude transfer function is essentially the pupil function with a scaled
coordinate.

Example. Suppose that the pupil function is

P (ξ) = rect

(
ξ

2w

)
rect

( η

2w

)
. (2.81)

The amplitude transfer function is just the pupil function with a

60



2.5. IMAGE FORMATION

scaled coordinate

H(f) = P (λz2f)

= rect

(
λz2fξ
2w

)
rect

(
λz2fη
2w

)
.

2.5.4 Optical Transfer Function

For incoherent imaging systems, the observed intensity Ii(x) follows
from Equation (2.73) that

Ii(x) = |h(x)|2 ⊛ Ig(x)

= κ

∫ ∞
−∞
|h(x− u)|2 Ig(u) du, (2.82)

where κ is the constant 1/|M |2 resulting from Theorem 2.5. The con-
volution here is defined for |h|2 and Ig. Thus, we consider the following
terms:

Gg(f) = Fourier{Ig(x)} =
∫∞
−∞ Ig(x) exp{−j2πfTx}dx∫∞

−∞ Ig(x)dx
,

Gi(f) = Fourier{Ii(x)} =
∫∞
−∞ Ii(x) exp{−j2πfTx}dx∫∞

−∞ Ii(x)dx
,

where we normalize the Fourier transforms by the signal powers so that
the maximum intensities of Gg and Gi are the unity. We then define
the optical transfer function:

Definition 2.8 (Optical transfer function). The optical transfer
function is

H(f) = Fourier{|h(x)|2} =
∫∞
−∞ |h(x)|2 exp{−j2πfTx}dx∫∞

−∞ |h(x)|2dx
.

In Fourier domain Equation (2.73) becomes

Gi(f) = H(f)Gg(f). (2.83)

Comparing Equation (2.79) with Equation (2.83), we observe that the
intensity of the image in an incoherent illumination is the convolution
of the magnitude squares.

61



CHAPTER 2. IMAGE FORMATION MODEL

With the ATF and OTF defined as

H(f) = Fourier{h(x)},
H(f) = Fourier{|h(x)|2},

we can write the relationship between the optical transfer function H
and the amplitude transfer function H is given by

H(f) =
∫∞
−∞H(p′)H∗(p′ − f) dp′∫∞

−∞ |H(p′)|2 dp′ , (2.84)

where we note the term |h(x)|2 turned into convolution in the Fourier
domain. Therefore, H(f) is the auto-correlation of the H(x). The
geometry of H(f) can be seen by doing a simple change of variable.
Letting p+ f

2 , Equation (2.84) can be re-centered as

H(f) =
∫∞
−∞H(p′ + f

2 )H
∗(p′ − f

2 ) dp
′∫∞

−∞ |H(p′)|2 dp′ . (2.85)

Referring to Figure 2.16, H(f) is the ratio

H(f) = area of overlap

total area
.

Figure 2.16: The optical transfer function H(f) is the autocorrelation
function of H(f) evaluated at position given by the two circles. This
translates to computing the ratio between the overlapping area and the
total area.

For a circular aperture, the amplitude transfer function is

H(f) = P (λz2f). (2.86)
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Substituting into Equation (2.85), we have

H(f) = P (λz2f)⊛ P (λz2f)

P (0, 0)⊛ P (0, 0)
, (2.87)

which we can recognize as simply an autocorrelation of the scaled pupil.
The overlapping region can be computed by referring to Figure 2.16.
The details for the evaluation of the circular OTF may be found in
Goodman [11]. Using geometry, it can be shown that

H(f) =


2
π

[
arccos

(
f

2f0

)
− f

2f0

√
1−

(
f

2f0

)2]
, f ≤ 2f0,

0, otherwise,

(2.88)

where we defined the cutoff frequency

f0 =
w

λzi
, (2.89)

where here f0 corresponds to the cutoff frequency of the coherent sys-
tem of the same aperture, meaning the incoherent version of the same
system will have a frequency cutoff that is twice the size. The OTF
obtained in Equation (2.88) is important, as it is the OTF of an in-
coherent diffraction-limited system. Assuming a perfect lens without
distortions such as defocus, the system has a fundamental limit due to
diffraction.

2.6 Space-Variant Systems

Thus far we have discussed optical systems with a single invariant point
spread function |h(x)|2. This, of course, is in line with the standard sig-
nals and systems view of LSI systems. As we progress towards imaging
through turbulence, we will no longer be able to justify this assumption
of spatial invariance; the situations we will encounter may even have
a different PSF (alternatively, an impulse response) for virtually every
location in the image. These differences will be correlated in space but
may be wildly varying across the entire field of view. Therefore, we
must re-examine our view of convolution to include spatially varying
systems correctly.
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2.6.1 Two Models for Convolution

Convolution between an input J(x) and an impulse response h(x) is
often written as

I(x) = J(x)⊛ h(x) =

∫
J(u)h(x− u)du. (2.90)

This is a simplification of a more general equation. The convolution
equation is a special case of the superposition integral

I(x) =

∫
h(x,u)J(u)du. (2.91)

If the system is space-invariant, the impulse response can be simplified
to h(x,u) = h(x− u).

The superposition integral represents a more general framework
for describing linear systems, of which the LSI systems are a subset.
The LSI system particularly lends itself to the interpretation offered by
Oppenheim and Willsky [12] in which the impulse response is flipped,
shifted, then multiplied and integrated. This is a literal interpretation
of (2.90). The alternative to this is to interpret convolution through
(2.91) which suggests the response is a weighted summation of impulse
responses centered at each u.

We now introduce the possibility for the impulse response to vary
as a function of position. However, we will choose two specific pa-
rameterizations, one in which the impulse response is parameterized
by x, and the other where it is parameterized by u. We first consider
the impulse response to vary as a function of u, leading us to write
Equation (2.91) as

I(x) = (J ⊛ hu)(x) =

∫
J(u)hu(x− u)du, (2.92)

This implies h(x,u) = hu(x− u). The alternative form of convolution
rests upon the shift-and-integrate algorithm towards convolution often
presented in a signals and systems course. The output at the coordinate
x will be dictated by the impulse response at x. Following the flip and
shift principle, this leads us to write

I(x) = (J ⊛ hx)(x) =

∫
J(u)hx(x− u)du (2.93)

This implies h(x,u) = hx(x− u).
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(a) Scattering convolution (b) Gathering convolution

Figure 2.17: A visualization of the difference between scattering and
gathering convolutions. Source: [15].

Note that (2.92) writes the impulse response as a function of the
source location. That is, the location of an impulse response in the
input signal will dictate the form of the impulse response as suggested
by hu. Equation (2.93) instead parameterizes the impulse response by
the receiver location hx. This leads us to refer to the two forms of
convolution in the following way: we will refer to (2.92) as scattering
convolution and (2.93) as gathering convolution. We visualize this
difference in interpretation in Figure 2.17.

To provide some insight into the terminology used for these two
forms of convolution, first consider a signal which is comprised of a
single impulse response located at u. As x is varied, because of the
fact that I(x) = hu(x− u), the output is simply the impulse response
hu(x) centered at u. Thus, it tells us how the impulse response located
at u spread to the neighboring points. Thus, the energy has been
scattered from one point to many.

The alternative is to suppose we are interested in a receiver loca-
tion x. This fixes our impulse response as hx. However, note that this
is already what (2.93) is doing; hx is fixed in this integral. To compute
the output, the impulse response, parameterized by source location x
is flipped and shifted x, then multiplied and integrated by the signal
J(u). Furthermore, through integration, the convolution takes the en-
ergy that exists within the input signal, multiplies and integrates over
it, and places it in one location at x. Because of the fact the energy goes
from many locations to one, it is referred to as gathering convolution.

To contrast the two forms in a different way, consider the input
signal to be an impulse response J(x) = δ(x − u). The output by
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scattering would be
I(x) = hu(x− u),

whereas the output by gathering would be

I(x) = hx(x− u).

Due to the fact that x need not equal u, the two responses may be
different. Furthermore, the gathering result is harder to interpret con-
ceptually as the impulse response changes with each x, where in the
case of scattering the impulse response is fixed as hu. With this book
focusing on imaging through turbulence, a system that varies spatially,
we need to determine which one is appropriate for our purposes.

2.6.2 Which Model is Correct for Imaging?

The short answer is that for modeling the wave propagation phenomenon,
the scattering equation is the correct model. Here are some elaborated
answers.

As we showed, the incoherent imaging system is linear in inten-
sity, and thus far we have further assumed it to be spatially invariant.
If we relax this assumption of spatial invariance, we must rely on the
superposition integral to relate the input and output of a general sys-
tem,

I(x) =

∫
h(x,u)J(u)du.

This leaves us with a choice in determining how to choose h(x,u).
Specifically, should h(x,u) be parameterized by the source or receiver
variable? This choice is analogous to the case of deciding whether or
not to perform scattering or gathering convolution [15], with parame-
terization by source location u corresponding to scattering and receiver
location x to gathering.

One way this question can be answered is through the terminology
used by the optics community. Instead of using the term impulse re-
sponse, filter, or kernel when discussing Fourier Optics, we have opted
to use the term “point spread function”. This term emphasizes the
scattering model. The point spread function determines how a point
(or impulse) will spread across the sensor plane (or, more generally, the
surface of interest). The point spread function may change as a func-
tion of point location, but it will still describe how a particular point
will spread across the sensor plane. It is also suggested through the
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visualization of the two in Figure 2.17 that this matches our intuition
with image formation; a point source located at a position will spread
energy across the focal plane via propagation.

These concepts can be demonstrated more mathematically and
through numerical experiments. With the current background, the
introduction of these concepts would be somewhat challenging. There-
fore, we would suggest the interested reader to a paper by Chimitt et al.
[15] which provides the proof and helpful visualizations comparing the
two forms of convolution and showcases why scattering is the proper
choice in modeling imaging.

To tie the end of this Chapter with the beginning, the response
of a linear, space-invariant imaging system is given as

Ii(x) = |Fourier{P (ξ)ejϕ(ξ)}|2 ⊛ Ig(x). (2.94)

For the rest of this book, we will often allow the PSF to vary spatially
through the following equation,

Ii(x) =
(
|Fourier{P (ξ)ejϕu(ξ)}|2

u
⊛ Ig

)
(x). (2.95)

This is a special class of PSFs that are parameterized by their phase
error ϕu, which we allow to be spatially varying as a function of point
source location u. Our notation here is used to make the operation
clear. First, the phase is defined by ξ which spans the aperture plane.
From this, the PSF is formed and, after being parameterized by coor-
dinate x/(λz), applied to Ig. This scaling of coordinate x will typically
be left off for simplicity in notation. We additionally emphasize the
fact that the convolution is spatially varying with dependence on the
source location by the notation above.

2.7 Summary

This Chapter presented Fourier optics combined with the thin lens
model as well as the image formation process and spatially varying
convolution. We summarize these as:

Part 1 Wave equation: We started by showing a class of waves

that satisfy the scalar wave equation ∇2u(x, t) = n2

c2
∂2u(x,t)

∂t2 . If we fur-
ther assume that u(x, t) = U(x) exp{−j2πνt}, then the waves should
satisfy the Helmholtz equation: ∇2U(x) + k2U(x) = 0. All our subse-
quent discussions are about waves that satisfy the Helmholtz equation.
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Part 2 Diffraction: We used the Huygens-Fresnel principle to
model how waves move from one point to another point. Based on
HFP, we then show the Rayleigh-Sommerfeld diffraction integral equa-

tion: U(x) = 1
jλ

∫
Σ
U(ξ) exp{jkr}r cos θdξ. The Rayleigh-Sommerfeld

equation is general, and so we introduce two approximations. The
first approximation leads to the Fresnel diffraction. With a second
approximation, the Fresnel diffraction is simplified to the Fraunhofer
diffraction.

Part 3 Lens: All imaging systems use a lens with a finite aperture.
The lens is equivalent to applying a convolutional kernel |h(x)|2 to the
field U(x). The convolutional kernel |h(x)|2 is the Fourier transform of
the pupil function. For example, if the lens is circular, then |h(x)|2 is
the Bessel function (or the Airy disc). The kernel h(x) is also known
as the point spread function. In the absence of any distortion, the
resulting field will have an intrinsic resolution limit determined by the
width of the |h(x)|2.

Part 4 Image Formation: We are mostly interested in two types
of sources: coherent and incoherent. For coherent light, the image (not
the field) is Ii(x) = |h(x)⊛ Ug(x)|2. For incoherent light, the image is
Ii(x) = |h(x)|2⊛Ig(x). Unless we use a laser source, typical long-range
imaging through turbulence using a conventional camera is incoherent.
The amplitude transfer function is H(f) = Fourier{h(x)}. The optical
transfer function is H(f) = Fourier{|h(x)|2}.

Part 5 Spatially Varying Convolution: A set of tools for rep-
resenting spatially varying convolution were presented along with the

notation hu(x)
u
⊛ J(x). This is based on the perspective of superposi-

tion, with the chosen model for imaging as scattering convolution.
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The aim of this Chapter is to present the statistical model for
imaging through the atmosphere. This begins with first understand-
ing the statistical model for the atmosphere’s index of refraction. The
model adopted here is that the atmosphere’s index of refraction is a
random, turbulent process that changes according to altitude, temper-
ature, pressure, wind, humidity, and other factors. This Chapter will
introduce one of the more prevalent models, how it fits into our un-
derstanding of image formation, and how we may simulate turbulent
effects on an image.

Figure 3.1: A schematic diagram illustrating the partition of a hor-
izontal optical path into many small segments. In this Chapter, we
will analyze the statistical properties of the layers and their impact on
waves propagating through them.

Consider the imaging situation presented in Figure 3.1, in which
a camera is placed a long distance away from an object (for our pur-
poses, 500 meters or more will be suitable). In this situation, a wave
that would have propagated as a planar wave in a vacuum is instead
distorted by the atmosphere. These distortions are analogous to the
case of a thin lens, however, instead of the thickness of the lens being
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carefully chosen to produce a converging, focused wave, the atmosphere
generates a low quality “dented” wavefront. This denting of the wave-
front will affect the image formation process by injecting a phase error
into our system. We start with an overview to give the reader a sense
of what these effects look like on an image and follow this with a brief
summary of the rich history of the subject.

3.1 Overview and History

3.1.1 The Image Formation Model

In Chapter 2, we introduced the spatially invariant optical system’s
image formation equation,

Ii(x) = |h(x)|2 ⊛ Ig(x), (3.1)

which relates the observed image Ii(x) to the geometric image Ig(x)

through the application of a spatially invariant PSF |h(x)|2,

|h(x)|2 =
∣∣∣Fourier{P (ξ)ejϕ(ξ)}∣∣∣2

f=x/(λz)
. (3.2)

This particular PSF is described both by the aperture P (ξ) and phase
error ϕ(ξ). In Chapter 2, we presented an example where ϕ(ξ) described
the focusing error by an imaging system. In this Chapter, we inject the
turbulence model into ϕ(ξ). Therefore, if we have a model for ϕ(ξ),
our efforts from the previous Chapter will be put to good use.

This leads us to encounter one of our first problems: the assump-
tion of spatial invariance does not hold true in the case of observations
through the atmosphere. Figure 3.2 illustrates this effect, where the
degradations appear to vary from point to point. This suggests a spa-
tially variant imaging model, a point we will visit more appropriately
in later portions of the Chapter. With what we have described so far,
ϕ is where the turbulence will be inserted. Therefore, we must allow ϕ
to vary as a function of position u in the object plane. This leads us
to write the PSF equation as

|hu(x)|2 =
∣∣∣Fourier{P (ξ)ejϕu(ξ)}

∣∣∣2
f=x/(λz)

. (3.3)

along with the image formation equation for a spatially variant system
to be

Ii(x) =
(
|hu|2

x
⊛ Ig

)
(x). (3.4)
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Figure 3.2: Three images of a board with printed text taken over a
long distance (approximately 500 meters). Note the spatially varying
effects, some words are blurred while others are legible.

Here, we denote u as the input or source location and x as the output
or receiver location.

It is important to note that Equation (3.3) is an approximation.
Throughout this Chapter, and in fact the entire book, we will rely upon
the assumption as follows:

Assumption. We assume that the turbulent distortions can be
adequately summarized by the phase distortions.

The assumption means that the amplitude distortions are negligible.
If we take into account the amplitude distortions, a more general PSF
equation would be

|hu(x)|2 =
∣∣∣Fourier{Au(ξ)P (ξ)e

jϕu(ξ)}
∣∣∣2
f=x/(λz)

, (3.5)

where Au(ξ) is a spatially varying amplitude component which also
varies per location in the object plane. Our assumption enables us to
describe levels of turbulence that fall in the weak to moderate levels
of distortions. We can justify this in two ways: (1) The assumption of
phase-exclusive distortions is common to many varieties of simulation
and turbulent imaging literature; (2) the reconstruction of wide FOV
incoherent images through strong turbulence is ill-posed. We view (2)
as the proper justification for the purposes of this book; the problems
we want to solve will be challenging even in this weak to moderate
range. Therefore, the lack of generality will not cost us too greatly. We
will comment more directly on the limitations of this model when the
proper background has been introduced.
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3.1.2 Characteristics of Turbulence-Distorted Images

At this point, a reader who is familiar with the image processing liter-
ature may see the images in Figure 3.2 and feel the need to jump to
the conclusion that this is a standard deblurring problem. We empha-
size that this is not the case. While Chapter 5 will provide a thorough
discussion of the algorithms for these types of distortions, we wish
to describe a few key characteristics of the problem here. This should
hopefully convey the difficulties of reconstruction as well as give a sense
as to why such a careful description of the atmospheric model is needed.

Figure 3.3: A physical setup of observing the PSF through a series of
heat chambers. On the monitor, we display a grid of points. As light
passes through the heat chambers, the image captured by the camera
will suffer from turbulence.

Turbulent images are comprised of two key effects: pixel-shifting
and blur. Both of these effects will vary per pixel. We provide a
visualization of this in Figure 3.3. We further note that a blur kernel
|hu|2 has no closed form expression in the image space. So, we will need
to describe it exclusively by ϕu. Commonly used parametric models
such as the Gaussian blurs are not appropriate to be the prior model
because the turbulence blur kernels are not even symmetric. Note that
the point sources on the screen are very small near the bottom right of
the zoomed in portion while the points near the upper left are wider
and more complicated, once again highlighting the spatially varying
nature of the problem.

One must also consider the fact that the atmosphere changes over
time. This means that the degradation will fluctuate between multiple
frames. This has a significant impact on reconstruction approaches,
influencing the notion of lucky imaging. Lucky imaging rests upon
the fact that due to the atmosphere changing in time, every once in
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a while one will observe a frame or region which has minimal degra-
dation. Furthermore, pixel-shifting can be so strong that for a video
with a moving object, it can be difficult to algorithmically determine
if a motion is due to object motion or turbulence. All of these degra-
dations compound to create a problem that requires the incorporation
of temporal information, lucky imaging methodologies, deblurring, and
un-warping.

3.1.3 Historical Developments

The theory of atmospheric modeling that we will be discussing in this
book arises from statistical models of turbulence. The modern form of
statistics and probability can be traced back to Kolmogorov’s axiomatic
approach to probability [16] (originally published in 1933). Amazingly,
a core insight giving rise to the dominant form of modern turbulence
theory is also a result of Kolmogorov’s work [17, 18] in which he pro-
posed a statistical model which describes how turbulence transfers en-
ergy down from the large fluctuations to the small fluctuations of the
medium. Kolmogorov and a student of his, Obukhov, published addi-
tional papers on this subject (such as [19, 20, 21]), further elaborating
on various elements of the model.

These insights alone are not enough to bring us to where the field
stands today. There is a big gap missing – the works of Obukhov
and Kolmogorov just model the turbulence. The question as to what
happens to an optical wave propagating through the medium is not ad-
dressed. Continuing from the previous lineage, a student of Obukhov
by the name of Tatarskii (alternatively spelled Tatarski in some sources)
did exactly this in the form of an excellent manuscript [22] (the manuscript
being a converted version of his Ph.D. thesis!). In this book, Tatarskii
carefully applied the Kolmogorov theory within Maxwell’s equations,
resulting in the foundation that so many works derive from in the field
of optical turbulence. There is little denying that the work of Tatarskii
is likely the foundation of the field.

From here, a wide range of applications emerged1. One of the
more prominent researchers from this era (1960s - 1980s) is Fried. Fried
published a vast amount of papers over a long career, where we highlight

1As we write this book, we recognize our limitations of not being trained in a tra-
ditional physics manner. It is therefore sometimes hard for us to appreciate the raw
physics that has emerged from Tatarskii’s work. However, on the applications side,
especially towards generating large-scale datasets, we hope to share our experience
with the readers.
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the following papers which were particularly helpful when we started
to work on this topic: [23, 24, 25, 26, 27]. Fried proposed the coher-
ence diameter r0, which will be of significant importance for the latter
majority of this book and is often referred to as the Fried parameter.
Of course, we will return to its definition once the proper preliminaries
have been presented.

Aside from Fried, there are others such as Ishimaru [28, 29, 30]
who worked with Tatarskii and wrote his own book on the subject.
Greenwood contributed to adaptive optics in the presence of turbulence,
with the Greenwood frequency attributed to his name which quantifies
aspects of the temporal evolution of the atmosphere within the context
of adaptive correction [31]. Hufnagel [32, 33] contributed to what is now
regarded as the Hufnagel-Valley turbulence path model, a model we will
introduce later in this Chapter. Roggemann and Welsh [34, 35, 36] have
both published numerous works within the field and an influential book
that offers a thorough explanation of the necessary turbulent optics
which is arguably more accessible to the average reader than previous
texts. Additionally, there are those such as Tyson [37, 38] particularly
oriented in the direction of astronomical imaging and adaptive optics.

With some of our admitted subjectivity, there is one paper that
stands out among the rest. This is the paper by Noll [39] which may
very well be our favorite paper on the topic. Noll proposes a basis
expansion for the phase distortion (Fried also did this almost 10 years
earlier [23], however, Noll’s has emerged as the more dominant ap-
proach). We would also pair this endorsement of Noll’s paper with
Roddier [40] which offers a slight correction to Noll’s paper and ad-
ditional exposition, among other contributions. This basis expansion
will solve the issue regarding the phase distortion ϕ’s description in
a simplistic manner. Noll’s paper is so influential to the authors, in
fact, that virtually the entire simulation approach proposed by us and
collaborators ([41, 42, 43]) is inspired by Noll’s work. This paper, and
our various modifications and interpretation, will be the core of the
discussion in Chapter 4.

This Chapter will follow the same chronology as the historical
development described here. We will first introduce the Kolmogorov
model and related models. From here, we will apply it to optical propa-
gation through the atmosphere (following the more simplistic approach
along the lines of Roggemann and Welsh [34]) following various appli-
cations. Finally, we will close the Chapter with the classical approach
to simulating these effects in an imaging system known as split-step
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propagation, often referred to as simply “split-step”.

3.2 The Atmosphere’s Index of Refraction

A key component to the theory we are to discuss is that the atmo-
spheric index of refraction (which we will typically refer to as simply
the atmosphere) is distributed randomly in a turbulent fashion. A rea-
sonable question may then be: why is the atmosphere turbulent? While
the true reasoning is well beyond the scope of this book, we feel it im-
portant to give some perspective on the concept of turbulence. The
atmosphere can be modeled as a fluid. Fluid is said to move in either
a laminar or turbulent fashion. If we claim the atmosphere moves in
a laminar way, we must be prepared to claim that all particles of the
atmosphere are moving in the same direction without any deviation.
This clearly cannot be the case, for example, the wind is not blowing
in the same direction everywhere in the world at all times. By virtue of
the atmosphere not moving as laminar flow, we may then reason that
atmospheric motion is turbulent.

We emphasize this point for a key reason: turbulence does not
have to be “aggressive”, it can be slow moving and calm such as the
smoke that dances above a candle after being blown out. Furthermore,
the effect the atmosphere has on an imaging system is not something
that only happens sometimes. Rather, it is happening all the time and
is only easily observable in certain circumstances, such as ground-to-
ground imaging over a long distance.

3.2.1 Kolmogorov Power Spectral Density

The statistics of a random processX is often characterized by studying
the spatial correlation between X(r1) and X(r2) where r1 ∈ R3 and
r2 ∈ R3 are two spatial coordinates. We will denote correlation func-
tion of X as ΓX(r1, r2) = E[X(r1)X(r2)]. A frequently used assump-
tion for simplifying a random process is to assume it is homogeneous.
(In statistical signal processing, we call it wide sense stationary.) For
a spatially varying random process, the correlation function of a homo-
geneous process takes the form of

ΓX(r) = E[X(r1)X(r1 − r)], (3.6)

where r = r1−r2 is the spatial increment. In other words, homogeneity
implies the autocorrelation function can be written as a function of the
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difference r = r1 − r2 instead of the pair of absolute locations (r1, r2).
An alternative to the correlation function is the power spectral

density (PSD). For a homogeneous random process, the PSD is the
Fourier transform of the autocorrelation function by theWiener–Khinchin
theorem:

ΦX(k) =
1

(2π)2

∫ ∞
−∞

ΓX(r)ejk
T rdr, (3.7)

where k = [kx, ky, kz] is the spatial wavenumber vector. The scalar

wavenumber is k = |k| =
√
k2x + k2y + k2z .

With these concepts defined, we now turn to the fluctuations in
the atmosphere. Our discussion of the index of refraction follows the
one by Goodman [44]. We will model the atmosphere’s index of refrac-
tion as a function of spatial location r = [x, y, z], time t and wavelength
λ:

n(r, t, λ) = n0(r, λ)︸ ︷︷ ︸
mean index

+ n1(r, t)︸ ︷︷ ︸
fluctuation

. (3.8)

The mean refractive index n0(r, λ) can be assumed time independent
and may change with elevation or climate. The dependency of the wave-
length is ignored in n1(r, t) because it is generally weakly varying in the
visible spectrum. We will assume that the index of refraction n1(r) is a
zero-mean Gaussian process so that E[n1(r)] = 0 for any r [44, 22] and
denote its autocorrelation function as Γn(r1, r2) = E[n1(r1)n1(r2)].

This leads us to introduce the Kolmogorov model. The Kol-
mogorov model divides the fluctuations in n1 into three regimes which
are specified by the outer scale L0 and the inner scale ℓ0. Scales can
be thought of as structures that are on the order of the specified size.
The Kolmogorov model specifically models the energy behavior of the
turbulent fluctuations of sizes that are between the outer and inner
scales. Thus, for wavenumbers 2π/L0 ≤ |k| ≤ 2π/l0, Φn(k) follows the
Kolmogorov PSD [22, 17, 21]:

Φn(k) = 0.033C2
n|k|−11/3, (3.9)

where C2
n is called structure constant of the index of refraction with

units of
[
m−2/3

]
. The Kolmogorov PSD is shown in Figure 3.4, along

with a modified version known as the von Kármán PSD spectrum [45,
34]:

Φn(k) =
0.033C2

n

(|k|2 + k20)
11/6

exp

{
−|k|

2

k2m

}
, (3.10)
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where k0 = 2π/L0 and km = 5.92/l0. The fluctuations are better
modeled by the von Kármán PSD in the case of small wavenumbers k.
For a thorough discussion of the varying PSDs (both Kolmogorov and
non-Kolmogorov turbulence), we suggest the reader to Korotkova [46].
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Figure 3.4: Kolmogorov power spectral density and the von Kármán
power spectral density, plotted as a function of the scalar wavenumber
k = |k|.

3.2.2 Structure Constant C2
n

The Kolmogorov spectrum presented in Equation (3.9) introduces the
structure constant C2

n. The value of C2
n is an important parameter

for modeling the turbulence strength. We can think of the structure
constant as being analogous to the variance of a random variable. A
higher value of C2

n suggests a greater strength of turbulence. C2
n is

related to the altitude, location, time of day, etc. We will typically
allow C2

n to vary over the path of propagation, thus typically referring
to it as C2

n(z), which will call a turbulence profile.
In the literature, there exist many different models of C2

n. For
example, the Hufnagel-Valley profile [33, 47, 48, 34] models C2

n as a
function of the altitude h using

C2
n(h) = 5.94× 10−53(v/27)2h10e−h/1000

+ 2.7× 10−16e−h/1500 +Ae−h/100,
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where the typical value of A is A = 1.7×10−14
[
m−2/3

]
and the value of

v is v = 21 [m/s]. The Submarine Laser Communication Day (SLCD)
profile [48, 34] states that

C2
n(h) =



0, 0 [m] < h < 19[m],

4.008× 10−13h−1.054, 19 [m] < h < 230 [m],

1.3× 10−15, 230 [m] < h < 850 [m],

6.352× 10−7h−2.966, 850 [m] < h < 7000 [m],

6.209× 10−18h−0.6229, 7000 [m] < h < 20000 [m].

For ground-to-ground imaging, it may be reasonable to assume a con-
stant C2

n profile for simplicity, though it may certainly vary depending
on many factors (e.g. a heat source along the path).

Figure 3.5 shows the C2
n profile according to the Hufnagel-Valley

model. C2
n is generally large when the altitude is below 20 [m] and

it starts to decrease sharply as the altitude increases. One explana-
tion is that the ground has a higher temperature than air at a higher
altitude. For ground-to-ground imaging, the range of C2

n is typically
around 10−13

[
m−2/3

]
(for strong turbulence) to 10−17

[
m−2/3

]
(for

weak turbulence).
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Figure 3.5: Profile of the C2
n as a function of the altitude, where we are

comparing the SLCD profile vs. the Hufnagel-Valley profile.

3.2.3 The Structure Function Dn(r)

Examining Equation (3.9), we notice a particular difficulty, namely the
singularity when k = 0. This will cause an issue for the evaluation of
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the correlation function by the Wiener–Khinchin theorem,

Γn(r) =
1

(2π)2

∫ ∞
−∞

0.033C2
n|k|−11/3e−jk

T rdk. (3.11)

This leads us to introduce a unique characteristic of the statistical
turbulence literature, the structure function. The structure function
is an alternative to the correlation function as defined in [17]:

Dn(r) = E[(n1(r1)− n1(r1 − r))2]. (3.12)

With the assumption of stationarity, we can show thatDn(r) = 2[Γn(0)−
Γn(r)] and hence [22, 34]

Dn(r) = 2

∫ [
Φn(k)− Φn(k)e

−jkT r
]
dk

= 2

∫ [
1− cos

(
kT r

)]
Φn(k)dk. (3.13)

The form of the structure function and PSD relationship aids in con-
trolling the divergence near k = 0. It has been shown that this integral
converges for a set of cases to which the Kolmogorov PSD belongs [22].

Assuming that n1(r) is isotropic (spherically symmetric), and us-
ing the Kolmogorov PSD Φn(k), we can derive the following:

Definition 3.1 (Kolmogorov Structure Function of the Index
of Refraction). Assuming the index of refraction is a homoge-
neous (spatially stationary) and isotropic (spherically symmetric)
random process, the Kolmogorov structure function is defined as
[22, 49, 34]

Dn(r) = C2
n|r|2/3, (3.14)

where C2
n is the structure constant of the index of refraction, and

r = [x, y, z] is the coordinate in the 3D space.

The structure function is even well-defined even in the case of in-
homogeneities. This is allowed by its invariance to the small wavenum-
ber effects, which correspond to the large scale behavior. As a result
of the definition of the structure function in Equation (3.13), the PSD
will be attenuated near |k| = 0. Thus, even if the variance of n1 were
to fluctuate over space, the structure function will appropriately miti-
gate the resulting inhomogeneities. The structure function, as a result,
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will be homogeneous and isotropic even in the case of inhomogeneous
atmospheric turbulence (for more details on this topic, we suggest the
reader refer to Tatarskii [22]).

3.3 Structure Function of the Phase

In Chapter 3.2, we discussed the statistics of the index of refraction.
For the purposes of imaging, we are interested in the effects the in-
dex of refraction has on a wave. We will focus specifically on how the
atmosphere affects the phase of a propagating wave. Our plan of de-
velopment is to first derive the statistics of the phase for a single layer
of homogeneous turbulence, as shown in Figure 3.6. We will then use
this result for multiple layers, which will generalize our development to
paths with varying C2

n profiles.
We wish to emphasize that the following analysis will be for a

single point source. The extension to objects would only stand to com-
plicate our approach at this time. We will introduce a way towards
modeling the spatially varying nature towards the end of this Chap-
ter regarding simulation. Chapter 3 will be dedicated to the image
formation model more completely.

Figure 3.6: Phase lead and lag caused by a medium with a high re-
fractive index. As light passes through the medium, the speed of the
light is slowed down because the refractive index is higher than the
vacuum. This causes a phase delay. The longer the propagation path,
the stronger the phase distortion will be.

3.3.1 A Single Turbulence Layer

We will first begin with the propagation of a plane wave through a
single layer of turbulence. It is first important to note our convention
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of measuring propagation distance: we choose to measure the distance
from the aperture plane, thus z = L is in the object plane while z = 0 is
in the aperture plane. For a propagation distance of L, we segment the
atmosphere intoM homogeneous segments partitioned by distances Li.
For simplicity, let us focus on the case of z = 0 to z = L1. At this point,
we will drop the subscript i as we are only focusing on one segment. We
assume the turbulent medium of thickness L is homogeneous, isotropic,
and distributed according to the Kolmogorov spectrum.

Decomposing r = [ξ, z] where ξ = [x, y] is the coordinate in the
2D plane and z is the coordinate along the propagation path, the phase
distortion caused by the medium with a propagation distance L follows
the equation

ϕ(ξ, L) = k

∫ L

0

n1(ξ, z) dz, (3.15)

where k = |k| = 2π/λ is the scalar wavenumber. Note that this medium
of refractive index n1(r) will cause phase effects that vary across the
wavefront.

Following a similar development to the thin lens, let us denote the
incident wave before the atmospheric layer to be U(ξ) and the output
wave U ′(ξ). Our focus is then on the distribution of the emergent
wave, U ′(ξ). For simplicity, let us assume that U(ξ) is a plane wave
with U(ξ) = 1. Accordingly, the input-output relationship is given by

U ′(ξ) = tϕ(ξ), (3.16)

with tϕ(ξ) = ejϕ(ξ). In general, the distortions will consist of not only
the phase term but also an amplitude term. However, for simplicity in
this book, we shall skip the discussion of the amplitude term.

As we are interested in the wave’s phase structure function, we
begin with consideration of the autocorrelation function:

ΓU ′(ξ, ξ′) = E[tϕ(ξ)t∗ϕ(ξ
′)]

= E[ejϕ(ξ)e−jϕ(ξ
′)]

(a)
= E

[
exp

{
jk

(∫ L

0

[n1(ξ, z)− n1(ξ′, z)] dz
)}]

, (3.17)

where (·)∗ denotes the complex conjugate, where we’ve utilized substi-
tution of Equation (3.15) in (a). At this point, we need to make an as-
sumption about n1(ξ, z) or otherwise we cannot proceed further:
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Assumption 3.1 (Assumption of n1(ξ, z)). We assume that
the index of refraction n1(ξ, z) is a zero-mean Gaussian random
process. Moreover, we assume that n1(r) is homogeneous and
isotropic for the region contained within L.

The normality (Gaussian statistics) is partially due to convenience be-
cause it is theoretically more tractable. We assume that the random
process is zero mean because the index of refraction n(ξ, z) has a con-
stant term n0(ξ, z) and a random term n1(ξ, z). The constant term
can take care of the offset and so the random term can be zero mean.
Our assumption of homogeneity and isotropy will again simplify our
analysis. In the next subsection, we will move towards multiple layers,
which will allow for large scale inhomogeneities.

With these assumptions in mind, we recall the following moment
generating function property of a zero-mean Gaussian random vari-
able.

Lemma 3.1 (Moment Generating Function). Let X be a zero-
mean Gaussian random variable, and let s be any constant. Then,

E[esX ] = exp

{
s2σ2

2

}
, (3.18)

where σ2 = Var[X] is the variance of X.

Using the above lemma, it follows that E[e−jX ] = exp{−σ2/2}. There-
fore, we can show that

Γtϕ(ξ, ξ
′) = exp

{
− 1

2
k2E

(∫ L

0

[n1(ξ, z)− n1(ξ′, z)] dz
)2


︸ ︷︷ ︸
Dϕ(ξ,ξ′)

def
= E[(ϕ(ξ)−ϕ(ξ′))2]

}
.

Notice that the usage of the moment generating function results in the
structure function of the indices of refraction appearing in the expo-
nential function. This term within the exponential function represents
the structure function of the accumulated phase distortions and is ac-
cordingly referred to as the phase structure function.
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Definition 3.2 (Phase Structure Function). Suppose light passes
through a random medium of distance L with a fluctuating index
of refraction n1(ξ, z). The structure function of the phase is de-
fined as

Dϕ(ξ, ξ
′)

def
= k2E

(∫ L

0

[n1(ξ, z)− n1(ξ′, z)] dz
)2
 , (3.19)

where the expectation is taken with respect to n1(ξ, z).

This serves as a useful result, however, there is a fair amount
of simplification possible. Rewriting the square as a product of two
integrals, we show that

Dϕ(ξ, ξ
′) = k2E

[∫ L

0

∫ L

0

[n1(ξ, z)− n1(ξ′, z)]

× [n1(ξ, z
′)− n1(ξ′, z′)] dz dz′

]
.

Expanding the inner terms algebraically and the fact that Dn(ξ, z) =
2[Γn(0, z) − Γn(ξ, z)], recognizing that Dn(ξ, z) = Dn(−ξ, z) we can
rewrite the above equation as

Dϕ(ξ, ξ
′) = k2

∫ L

0

∫ L

0

[
Dn(0, z − z′)−

1

2
D(ξ − ξ′, z − z′)

− 1

2
Dn(ξ

′ − ξ, z − z′)
]
dz dz′

= −k2L
∫ L

−L

[
Dn(0, z)−Dn(ξ − ξ′, z)

](
1− |z|

L

)
dz.

Substituting the Kolmogorov structure function of the refractive in-
dex Dn(ξ, z) = Dn(r) = C2

n|r|2/3 = C2
n(|ξ|2 + z2)1/3 and using a key

numerical observation by Fried [24], it follows that

Dϕ(ξ, ξ
′) = −k2LC2

n

∫ L

−L

[
z2/3 − (|ξ − ξ′|2 + z2)1/3

](
1− |z|

L

)
dz

= 2.91k2LC2
n|ξ − ξ′|5/3. (3.20)

83



CHAPTER 3. MODELING TURBULENCE

This expression constitutes a key result: we can now statistically
describe the phase of a wave after propagation through a turbulent
medium defined by the Kolmogorov spectrum. Furthermore, we can
see it is homogeneous and isotropic. In what shall follow, we will see
that we can use this result, combined with an assumption, to generalize
to multiple slices of turbulence.

3.3.2 Multiple Phase Screens

Suppose C2
n(z) changes appreciably along the path of propagation such

as in the case of astronomical viewing. We will then require our pre-
vious result to be extended to cases beyond a homogeneous layer of
turbulence. For propagation of this variety, there may exist inhomo-
geneities in the distribution. A more rigorous wave analysis is beyond
the discussion of this book, though we would point the interested reader
to [44, 22, 50, 46] or [7, Ch. 13]. We instead take a simpler approach
described by [34] that will result in the same solutions as more complex
methods, leading us to introduce the concept of the layered model for
turbulence to model the atmosphere, which requires us to introduce an
assumption:

Assumption. We assume that the turbulent layers are statisti-
cally independent of one another.

We first define our resultant phase as

ϕ(ξ) = k

∫ L

0

n1(ξ, z) dz,

= k

M−1∑
i=1

∫ Li

Li−1

n1(ξ, z) dz. (3.21)

As previously, we are interested in the structure function of this phase
realization. As a result of our assumption of phase screen independence,
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we may write

Dϕ(ξ, ξ
′) = k2E

(M−1∑
i=1

∫ Li

Li−1

[n1(ξ, z)− n1(ξ′, z)] dz
)2
 ,

(a)
= k2E

M−1∑
i=1

(∫ Li

Li−1

[n1(ξ, z)− n1(ξ′, z)] dz
)2
 ,

= k22.91k2|ξ − ξ′|5/3
M−1∑
i=1

C2
n[i]∆Li, (3.22)

where ∆Li = Li+1 − Li and (a) utilizes the independence of the at-
mospheric slices, thus dropping the cross terms in the squared summa-
tion. This result shows that the phase structure function is related to a
weighted sum of the turbulence strength along the path of propagation.

Two additional extensions of this result will be of importance,
the first of which is the extension of Equation (3.22) to a continuous
integration which we give without proof,

Dϕ(ξ, ξ
′) = 2.91k2|ξ − ξ′|5/3

∫ L

0

C2
n(z)dz. (3.23)

A second extension of our result will be to spherical waves. Thus far, we
have only derived phase statistics as a result of plane wave propagation,
which significantly simplified our analysis. The extension to spherical
waves is done by the introduction of a term into the integrand,

Dϕ(ξ, ξ
′) = 2.91k2|ξ − ξ′|5/3

∫ L

0

C2
n(z)

(
L− z
L

)5/3

dz. (3.24)

We again emphasize our convention of defining z = L to be in the
object plane, thus, the turbulence near the object contributes less than
the turbulence near the imaging system due to the term (L− z)/L.

3.3.3 Wave Structure Function

Thus far we have commented on the phase structure function. For our
purposes, this will be a sufficient description and indeed our chosen
model for the rest of the book. However, it is worthwhile to mention
that the phase structure function is a component of the overall wave
structure function.
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Definition 3.3 (Wave Structure Function). The wave structure
function is defined to be [51]

D(ξ, ξ′) = Dl(ξ, ξ
′) +Dϕ(ξ, ξ

′), (3.25)

where Dl(ξ, ξ
′) and Dϕ(ξ, ξ

′) are the structure functions of the
log-amplitude and phase, respectively.

The wave structure function leads us to briefly introduce the log-
amplitude. The log amplitude quantifies the variation of the amplitude
of the wave (of course, the wave is comprised of phase and amplitude
components.) In a paper by Fried [51], the log-amplitude is defined to
be

l(ξ) = ln
(
A(ξ)/A

)
(3.26)

where A(ξ) is the amplitude at a point x and A is the root mean square
(RMS) value of A(ξ). It is important to note that the log amplitude was
studied in depth in Tatarskii’s manuscript [22], though is more easily
referenced in Fried’s paper with Fried providing a bit of additional
exposition on his choice in usage of A in a footnote.

We will typically opt to describe only the phase structure func-
tion and not the wave structure function. The reason for this can be
understood again by Fried [24] in which the following approximations
are provided

Dϕ(ξ, ξ
′) ≈ D(ξ, ξ′) D ≫ (Lλ)1/2, (3.27)

Dϕ(ξ, ξ
′) ≈ 1

2
D(ξ, ξ′) D ≪ (Lλ)1/2. (3.28)

We refer to the case of (3.27) as the near field and (3.28) as the far field.
This gives us some sense of how to interpret the fact that the phase
structure is typically sufficient. In the near field, the wave structure
function is approximately the wave structure function whereas in the
far field, it is approximately half of the wave structure function. Thus,
in the near field, the phase structure function is sufficient in describing
the perturbations.

At this point, we wish to remind the reader that the developed
theory thus far, and the one which we will apply throughout the book,
is valid for only weak to moderate turbulence. This limitation is most
precisely shown in the context of Maxwell’s equations for inhomoge-
neous media, though it is well beyond the scope or intent of this book.
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In Tatarskii’s manuscript [22], the inhomogeneous Maxwell’s equations
were simplified via the Rytov approximation. The results which carry
out from here are said to describe weak fluctuations and give rise to
what has been presented thus far (weak fluctuations here refers to the
amplitude fluctuations). Within this framework, one may analyze the
amplitude behavior, also known as scintillation. For further details,
we would refer the reader to Goodman [44] as a starting point, though
Tatarskii discusses these directly in his manuscript [22] along with Ishi-
maru [28].

Though one may analyze scintillation in this context (for example,
as done by Goodman [44]), there exist alternative approaches which uti-
lize more complex mathematical concepts and provide more generality.
One such approach is known as the path integral formulation (alterna-
tively known as a Feynman path integral) [52]. The motivation for the
path integral arose most famously from quantum mechanics, though
the same methods have been applied to wave propagation through ran-
dom media. These methods were applied to the case of turbulence in
works from Tatarskii and collaborators [53, 54, 30, 55] along with oth-
ers such as Dashen [56]. To our knowledge, this framework represents
the most general approach to describing the problem to date. These
methods seek to describe the regime in which strong fluctuations exist
(i.e. strong amplitude fluctuations).

3.4 Important Applications of the Model

The results of Chapter 3.3 comprise some of the most significant results
of turbulent imaging for our purposes. We now present a few general
results such as the Fried parameter. After this, we move towards defin-
ing the isoplanatic angle, along with two optical transfer functions that
describe various temporal aspects of imaging through the atmosphere.

3.4.1 Fried Parameter and Isoplanatic Angle

The atmospheric coherence diameter r0 (or as we shall call it, the Fried
parameter) is defined to be a measure related to the resolution of an
imaging system. We begin with defining this important parameter
introduced by Fried [23]:
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Definition 3.4 (Fried Parameter). Consider a turbulent medium
with a structure constant of the index of refraction C2

n, and prop-
agation distance L. For a plane wave incident upon turbulence,
the Fried parameter is defined as

r0 = 0.185

[
4π2

k2
∫ L

0
C2

n(z)dz

]3/5
, (3.29)

and for a spherical wave:

r0 = 0.185

[
4π2

k2
∫ L

0

(
L−z
L

)
C2

n(z)dz

]3/5
(3.30)

The Fried parameter can be interpreted as an aperture size that is im-
posed by the limits of atmospheric viewing (analogous to the numerical
aperture in image resolution). It is inversely proportional to the tur-
bulence strength C2

n and the path length L. A longer path length and
stronger turbulence will give a smaller r0. This r0 will then limit the
resolution. If we defineD as the aperture diameter, thenD/r0 will then
tell us the optical resolution of the image observed through turbulence.
Figure 3.7 shows a few examples.

Figure 3.7: Impact of the D/r0 to the observed point spread func-
tion. Here, D is the aperture diameter and r0 is the Fried pa-
rameter. Source: https://eaae-astronomy.org/images/projects/

catch-a-star/2015/18_How_to_measure_seeing.pdf

The Fried parameter is defined in careful accordance with the
results of Equation (3.22). As a result, we may rewrite the structure
function of the phase as follows:
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Definition 3.5 (Kolmogorov Structure Function of the Phase).
Assuming that index of refraction follows the Kolmogorov struc-
ture function, then the structure function of the phase is

Dϕ(ξ, ξ
′) = 6.88

( |ξ − ξ′|
r0

)5/3

, (3.31)

where r0 is the Fried parameter.

Due to isotropy and homogeneity, the structure function depends only
on the magnitude of the difference |x − x′| instead of the absolute
positions. Thus, we can also write the structure function as Dϕ(|ξ −
ξ′|). We further note that Equation (3.31) is valid for both planar and
spherical waves (though, the definition of the Fried parameter should
change accordingly!).

It should be noted that the Fried parameter varies in its definition
from planar to spherical. Therefore, one must be aware of which defi-
nition is being considered. To mitigate this, many sources denote the
spherical Fried parameter as r0,sw (though, we typically will not follow
such notation). Additionally, for a constant C2

n profile, the spherical
and planar Fried parameters are related by [34]

r0,sw =

(
8

3

)3/5

r0.

Example. In MATLAB, the Fried parameter can be determined
using the command integral. If we let C2

n(z) = 1× 10−15m−2/3

for all z, λ = 525nm, and L = 7000m, then the Fried parameter
is r0 = 0.0478m. For an aperture of D = 0.2034m, the ratio D/r0
is approximately D/r0 = 4.26. This means the smallest spot (i.e.,
the diffraction PSF) increases 4.26 times due to turbulence.

A closely related quantity to the Fried parameter is the isoplanatic
angle. The isoplanatic angle defines the field of view within which the
turbulence effects are said to be similar. The definition of the isopla-
natic angle arises from the adaptive optics community, wherein a guide
star is used to “calibrate” the imaging system for another, nearby point.
The isoplanatic angle quantifies this angle by the following definition
[34]:
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Definition 3.6 (Isoplanatic Angle). The isoplanatic angle is

θ0 = 58.1× 10−3λ6/5

[∫ L

0

z5/3C2
n(z)dz

]−3/5
, (3.32)

which quantifies the maximum angular separation by which adap-
tive optics methods will perform suitably well.

For the simulation techniques discussed towards the end of this Chap-
ter, both the Fried parameter and isoplanatic angle are the metrics
that can be used to quantify how close our simulation matches with
the specified turbulence profile and geometry.

3.4.2 Instantaneous OTF

Recalling the results of Chapter 2.5, Theorem 2.7 says that if the geo-
metric image is Ig(x), the observed image Ii(x) will be

Ii(x) = |h(x)|2 ⊛ Ig(x). (3.33)

In the Fourier domain where we define Ĩi(f) = Fourier[Ii(x)], it follows
that

Ĩi(f) = H(f)Ĩg(f). (3.34)

Therefore, the resolution and quality of the observed image are deter-
mined by H(f).

Consider now that there is turbulence present in the system. The
turbulence effect is modeled as the product of amplitude distortion,
phase distortion, and the pupil function. Substituting our understand-
ing of the complex pupil function into the definition of the OTF, we
can show that

H(f) = H(f)⊛H∗(f)

=
(
P (λzf)e−jϕ(λzf)

)
⊛
(
P (λzf)ejϕ(λzf)

)
,

where (·)∗ denotes complex conjugate, and ⊛ denotes convolution. We
refer to this OTF as the instantaneous OTF. The instantaneous OTF
is what the optical system sees at a particular instant. It is a random
OTF because the phase function ϕ(λzf) is random.
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Definition 3.7 (Instantaneous OTF). Let P (u) be the aperture
located at a distance z from the object, and let ϕ(λzf) be the ran-
dom phase distortion. The instantaneous OTF is

H(f) =
(
P (λzf)e−jϕ(λzf)

)
⊛
(
P (λzf)ejϕ(λzf)

)
, (3.35)

where ⊛ denotes the convolution.

Example. (Linear phase offset.) As an example of how the
phase distortion can affect the observed image, we consider the
case where

ϕ(ξ) = −2π

λz
αT ξ

for some random vector α. Assuming a circular aperture P (ξ),
the amplitude transfer function is

H(f) = P (λzf)ejϕ(λzf) = P (λzf)e−j2πα
T f ,

where the inverse Fourier transform is

F−1
[
P (λzf)e−j2πα

T f
]
= p

(
x−α
λz

)
(3.36)

where p(x) = J1(2π|x|)/|x|. Therefore, the instantaneous PSF is

h(x) =

∣∣∣∣p(x−α
λz

)∣∣∣∣2
= J1

(
2π
|x−α|
λz

)2/( |x−α|
λz

)2

, (3.37)

which is simply a shifted version of the Airy disc. Therefore,
ϕ(ξ) = − 2π

λzα
T ξ introduces a random tilt to the PSF. The amount

of the random tilt is specified by α.

What does the instantaneous OTF look like? One way to visualize
the effect is to consider the PSF by taking the inverse Fourier transform
of the OTF:

|h(x)|2︸ ︷︷ ︸
PSF

= Fourier−1{H(f)}. (3.38)
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Since ϕ(ξ) is random, |h(x)|2 is also random. Figure 3.8 shows a few
snapshots of the PSFs generated from Kolmogorov theory. The shape
of the PSF changes according to the strength of the turbulence.

Figure 3.8: Instantaneous point spread functions |h(x)|2 generated from
propagation through Kolmogorov phase screens. The PSFs shown in
this figure are statistically independent. In practice, the spatial cor-
relation needs to be taken into consideration to generate a realistic
turbulence effect.

The randomness of the OTF is governed by two effects:

• Tilt: The random pixel displacement caused by the first-order
effect of the phase ϕ(ξ). The tilt will cause the pixels to depart
from their ideal locations to another location.

• Aberration: The high-order effects such as blur, spherical aber-
ration, elliptical aberration, etc. caused by the phase delays (and
leads) in ϕ(ξ). The aberration will cause a mixing of pixel values,
thus making sharp edges become blurred.

The decomposition of the phase into tilt and aberration can be sum-
marized by the equation:

ϕ(ξ)︸︷︷︸
overall distortion

= φ(ξ)︸︷︷︸
aberration

+αT ξ︸︷︷︸
tilt

, (3.39)

where α is a vector defining the best-fitted first-order plane to the phase
function. In the following discussions, we will introduce two OTFS: a
long exposure OTF defined through ϕ(ξ) and a short exposure OTF
constructed using φ(ξ). The short exposure OTF is also known as the
tilt-free OTF, which plays an important role in adaptive optics and
the short-exposure analysis.
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3.4.3 Long Exposure OTF

The long exposure function can be seen as the OTF that will arise from
leaving the camera exposure open infinitely long. To this end, we take
the statistical expectation on both sides of the equation

Eϕ[H(f)] = Eϕ

[(
W (λzf)e−jϕ(λzf)

)
⊛
(
W (λzf)ejϕ(λzf)

)]
= Eϕ

[∫
W (ξ)e−jϕ(ξ) · W (ξ − λzf)ejϕ(ξ−λzf)dξ

]
=

∫
W (ξ)W (ξ − λzf)Eϕ[e

−jϕ(ξ)ejϕ(ξ−λzf)]dξ, (3.40)

where the subscript Eϕ[·] emphasizes that the expectation is taken with
respect to the random phase ϕ.

Recognizing the expectation within the integrand, we may utilize
the moment generating function (3.18) as we did in Chapter 3.3 to
directly write

Eϕ[e
−jϕ(ξ)ejϕ(ξ−λzf)] = Γtϕ(ξ, ξ − λzf), (3.41)

= exp

{
−1

2
Dϕ(λz|f |)

}
, (3.42)

= exp

{
−1

2
6.88

(
λz|f |
r0

)}
. (3.43)

where we have used the homogeneous property of the phase structure
function. This results in the expected value of the OTF to be decom-
posed as

Eϕ[H(f)] =
∫
W (ξ)W (ξ − λzf)dξ︸ ︷︷ ︸

Hdiff(f)

× exp

{
−1

2
6.88

(
λz|f |
r0

)5/3
}

︸ ︷︷ ︸
HLE(f)

,

which is a product of Hdiff(f) and HLE(f):

Theorem 3.1 (Decomposition of Average OTF). The average
OTF consists of two terms:

Eϕ[H(f)] = Hdiff(f)×HLE(f), (3.44)

where Hdiff(f) denotes the diffraction-limited OTF and HLE(f)
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denotes the long exposure OTF of the atmosphere.

For a circular aperture, Hdiff(f) follows from Chapter 2.4:

Theorem 3.2 (Diffraction limited OTF). For a circular aper-
ture, the diffraction limited OTF is

Hdiff(f) =
2

π

arccos( |f |
2f0

)
− |f |

2f0

√
1−

( |f |
2f0

)2
 , (3.45)

for f ≤ 2f0 where f0 is the cutoff frequency of the coherent version
of the system.

The atmospheric termHLE(f) is known as the long exposure OTF,
which is what we would observe if we turn on the shutter of the camera
for a prolonged period of time.

Definition 3.8 (Long Exposure OTF). The long exposure optical
transfer function HLE(f) is defined as

HLE(f) = exp

{
−3.44

(
λz|f |
r0

)5/3
}
, (3.46)

where z is the path length, and r0 is the Fried parameter.

The difference between the long exposure OTF and the instantaneous
OTF is that the instantaneous OTF is random whereas the long expo-
sure OTF is deterministic. The randomness is absorbed by the struc-
ture function of the phase when evaluating the joint expectation.

As a visualization of the instantaneous OTF and the long-exposure
OTF, in Figure 3.9 we show a comparison. Here, we plot the cross-
section of the PSF (instead of the OTF) using a finite-sample ensem-
ble average of 10, 100, and 5000 instantaneous PSFs. For the weaker
turbulence case where C2

n = 2.5 × 10−16m−2/3, we see that the ran-
dom fluctuation of the instantaneous PSF becomes weak as soon as
we use 100 instantaneous PSFs. If we consider a stronger turbulence
case where C2

n = 1 × 10−15m−2/3, the random fluctuation is stronger.
Moreover, the spread of the long-exposure PSF is also greater when we
use a higher C2

n.
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C2
n = 2.5× 10−16m−2/3 C2

n = 1× 10−15m−2/3

Figure 3.9: The theoretical long-exposure PSF compared with the em-
pirical averaged instantaneous PSFs for C2

n = 2.5 × 10−16m−2/3 and
C2

n = 1 × 10−15m−2/3. Shown in each sub-figure are the 10-frame av-
erage, 100-frame average, and 5000-frame average PSFs, all in black.
The red curve is the theoretically predicted result. The x-axis denotes
the Nyquist pixel, where one pixel corresponds to λz/D with D being
the aperture diameter.

Figure 3.10 shows another visual comparison between the finite-
sample ensemble average and the statistical long-exposure. As we can
see from the plots, the more instantaneous PSFs we use to compute
the ensemble average, the closer the average will converge to the true
long-exposure.

(a) 50-avg (b) 500-avg (c) 5000-avg (d) Theoretical

Figure 3.10: Instantaneous PSFs for C2
n = 1 × 10−15m−2/3. (a) 50-

frame average. (b) 500-frame average. (c) 5000-frame average. (d)
Theoretical long-exposure PSF.

3.4.4 Short Exposure OTF

The long-exposure OTF is the statistical average of an infinite number
of instantaneous OTFs observed over a very long period of time. In
many advanced imaging systems, fast steering mirrors are installed
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to adaptively compensate for the tilt observed in the wavefront. The
mathematical model removing the tilt from the phase is to subtract a
linear term from the observed phase:

φ(ξ)
def
= ϕ(ξ)−αT ξ, (3.47)

where αT ξ is the best linear fit to ϕ(ξ).
An image taken without the tilt is known as the tilt-compensated

frame. If we can obtain many of these tilt-compensated frames, then we
can take another statistical average known as the short exposure image.
The short exposure image can be thought of freezing the turbulence and
re-aligning the pixels such that they are centered. The tilt contributes a
majority of the energy of the distortions (such as in Table 4 of Noll [39]
for example), and as such, being able to use hardware to compensate
for the tilt can lead to a much better image.

Now consider the tilt-compensated phase realization. In this case,
the phase is

tφ(ξ) = exp {jφ(ξ)} = exp
{
j(ϕ(ξ)−αT ξ)

}
. (3.48)

The autocorrelation of the tilt-correct wavefront is

Γtφ(ξ, ξ
′) = E

[
tφ(ξ)t

∗
φ(ξ
′)
]

= E
[
exp

{
j(ϕ(ξ)−αT ξ)− j(ϕ(ξ′)−αT ξ′)

}]
= E

[
exp

{
j(ϕ(ξ)− ϕ(ξ′)−αT (ξ − ξ′))

}]
. (3.49)

Using the same trick of the moment generating function of a zero-mean
Gaussian, we can show that

Γtφ(ξ, ξ
′) = exp

{
− 1

2
E
[
(ϕ(ξ)− ϕ(ξ′))2

]
(3.50)

+ E
[
(ϕ(ξ)− ϕ(ξ′))αT (ξ − ξ′)

]
− 1

2
E
[
(αT (ξ − ξ′))2

]}
.

At this point, we aim to simplify the preceding expression. This leads
us to separately analyze the three terms in the exponential:

• The first term is E
[
(ϕ(ξ)− ϕ(ξ′))2

]
, which is nothing but the

structure function of the phase. Therefore, we have

E
[
(ϕ(ξ)− ϕ(ξ′))2

]
= Dϕ(ξ − ξ′), (3.51)

where we assumed that the phase is homogeneous so that the
structure function can be written in terms of ξ − ξ′.
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• The second term is the cross correlation between the phase dif-
ference ϕ(ξ) − ϕ(ξ′) and the linear term αT (ξ − ξ′). Following
the argument of Fried, we may assume that these two terms are
statistically independent (though, this approximation has been
considered more carefully by Heidbreder [57], showing the term
may not always be so easily neglected). Therefore, by using the
zero-mean property of the phase, we can show that

E[(ϕ(ξ)− ϕ(ξ′))αT (ξ − ξ′)] = E[ϕ(ξ)− ϕ(ξ′)]︸ ︷︷ ︸
=0

E[αT (ξ − ξ′)].

Hence, the cross term can be dropped.

• The third term is the second moment of αT ξ, which is

E[(αT (ξ − ξ′))2] = E[|α|2] · |ξ − ξ′|2. (3.52)

According to Fried [24], the expectation E[|α|2] is

E[|α|2] = 6.88r
−5/3
0 D−1/3, (3.53)

where D is the aperture diameter. Substituting this into Equa-
tion (3.52) yields

E[(αT (ξ − ξ′))2] = 6.88r
−5/3
0 D−1/3|ξ − ξ′|2.

Combining all three terms, we can show that

Γtφ(ξ, ξ
′) = exp

{
− 1

2
Dϕ(ξ − ξ′)−

1

2
E[(αT (ξ − ξ′))2]

}

= exp

{
− 1

2
6.88

( |ξ − ξ′|
r0

)5/3

− 1

2
6.88

|ξ − ξ′|2

r
5/3
0 D1/3

}

= exp

{
− 3.44

( |ξ − ξ′|
r0

)5/3
(
1−

( |ξ − ξ′|
D

)1/3
)}

.

(3.54)

Following the same argument as we did in Equation (3.40), we
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can show that the short exposure OTF is

Eφ[H(f)] =
∫
W (ξ)W (ξ − λzf)dξ︸ ︷︷ ︸

Hdiff(f)

× exp

{
− 3.44

(
λz|f |
r0

)5/3
(
1−

(
λz|f |
D

)1/3
)}

︸ ︷︷ ︸
HSE(f)

.

Thus, we arrived at another important result.

Definition 3.9 (Short Exposure OTF). The short exposure op-
tical transfer function HSE(f) is defined as

HSE(f) = exp

{
−3.44

(
λz|f |
r0

)5/3
(
1−

(
λz|f |
D

)1/3
)}

, (3.55)

where D is the aperture diameter, z is the path length, and r0 is
the Fried parameter.

Figure 3.11 shows the short-exposure point spread functions for
two levels of C2

n. Compared to Figure 3.9, the shape of the short
exposure PSF is narrower. The reason is that when the tilts are com-
pensated, the PSFs will be centered. The random fluctuation is thus
reduced compared to the long-exposure case.

3.4.5 Probability of Getting a Lucky Observation

The atmosphere fluctuates in time, and so do the resultant PSFs that
distort an image. This leads us to an interesting component of atmo-
spheric imaging. When observing a point source, sometimes the point
will look bad and sometimes it will look good! This is simply a result
of the random nature of the atmosphere; sometimes we get lucky and
sometimes we don’t.

The short exposure function introduced the tilt-compensated phase
term known as the effective wavefront. The effective wavefront con-
tributes blur from the higher order aberrations. If we are interested in
taking a clean image of a star, whether or not it has shifted by a few
pixels is hardly a consideration if it means having a non-blurry image.
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C2
n = 2.5× 10−16m−2/3 C2

n = 1× 10−15m−2/3

Figure 3.11: The theoretical short-exposure PSF compared with the
empirical averaged instantaneous PSFs for C2

n = 2.5×10−16m−2/3 and
C2

n = 1 × 10−15m−2/3. Shown in each sub-figure are the 10-frame
average, 100-frame average and 5000-frame average PSFs, all in black.
The red curve is the theoretically predicted result. The x-axis denotes
the Nyquist pixel, where one pixel corresponds to λz/D with D being
the aperture diameter.

For this reason, Fried refers to φ as the effective wavefront, as it is the
component of the wavefront that will effectively limit us in resolution.

In 1978 Fried analyzed the probability of having a lucky obser-
vation [27]. We may anticipate that a lucky observation is defined to
be a PSF that is near a delta function. However, there is no closed
form expression for a turbulent PSF, therefore we cannot analyze the
PSF directly. Fried instead focuses on the mean square of the effective
wavefront. Fried defines the mean square distortion to be

∆2(φ) =
(π
4
D2
)−1 ∫

Aperture

P

(
ξ

D

)
|φ(ξ)|2dξ, (3.56)

where we are normalizing by the area of the aperture. Fried’s analysis
ultimately results in the following approximate result:

Definition 3.10 (Probability of a Lucky Event). The probability
of having a lucky observation is approximated as

P
(
∆2(φ) ≤ 1 rad2

)
≈ 5.6 exp

(
−0.1557(D/r0)2

)
(3.57)

for D/r0 ≥ 3.5 with D as the imaging system’s aperture diameter
and r0 as the Fried parameter.
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Figure 3.12: Lucky probability curve. As D/r0 increases the probabil-
ity of a lucky observation drops with a sharp transition.

This result showcases the fact that this D/r0 ratio continually
arises in the atmospheric turbulence literature. Fried additionally per-
forms a Monte Carlo simulation, which we reproduce in Figure 3.12.
We can observe that at the critical threshold near D/r0 = 2, the lucky
probability begins its sharp transition. This can help to inform us as
to the definition of the Fried parameter. When the Fried parameter is
larger than the aperture diameter, the imaging system is near maxi-
mum efficiency. However, the moment r0 drops below the size of the
aperture, the system drops in its efficiency, dramatically attenuating as
the ratio of D/r0 increases above 2.

We will revisit the discussions of the lucky effect in Chapter 5.
There, we will take the perspective of image reconstruction algorithms.

3.5 Split-Step Simulation

With the theoretical descriptions of the atmospheric model presented,
we now describe a way towards simulating these effects. The literature
regarding the simulation of imaging through atmospheric turbulence
presents a few varieties of simulations, with split-step being likely the
most intuitive one. Implementing split-step such that the statistics are
correct is a non-trivial task, thus we recommend the book by Schmidt
[45] which provides an excellent, in-depth description of numerical op-
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tical simulations and split-step for atmospheric turbulence along with
detailed analysis. This book pairs well with the book from Voelz [58]
which deals with general optical simulation principles.

3.5.1 A History of Split-Step Simulation

The modality of split-step simulation is a general approach that has
been used both computationally [59, 60, 61] and in a laboratory sense
with physical devices such as tunable phase modulators [62, 63, 64],
heat sources [65, 66], or plastic screens [67], where a series of physical
devices are arranged in such a way that a propagating wave is perturbed
by the device. A clear visualization of such an experimental setup with
details is provided in a work by Pellizzari et al. [68]. Computationally,
the work generating the first phase screen simulator by use of Fourier-
based phase screens was McGlamery [69].

The scope of split-step is not limited to the propagation of atmo-
spheric turbulence, with an example being an early application of this
principle to sound waves through media [70] and its subsequent con-
sideration as a general simulation tool [71]. Applications towards wave
propagation through turbulence were later presented [72, 73] which de-
tailed both the approach and constraints in sampling upon properly
performing a simulation of this variety. Proper sampling is critical in a
split-step simulation. We ignore a majority of these details, opting for
a simple rule, though a thorough explanation of the sampling criteria
is given by Schmidt [45].

The introduction of randomness and the Kolmogorov turbulent
model into the simulation is by a set of turbulent layers which are
numerically represented by phase screens. As a result, a great deal of
effort has been dedicated to an accurate representation of these effects
[35, 74, 75, 76, 36, 77, 78, 79]. We will briefly cover the prevailing
approach towards accurately generating phase screens, as not including
these more nuanced aspects leads to poor results in terms of statistical
accuracy. Our coverage will be somewhat brief, thus our presentation
should be considered as an introduction.

3.5.2 Split-Step Simulation: Building Blocks

Conceptually, split-step is a natural approach to the simulation of at-
mospheric turbulence effects. Our derivation of the distortions in the
wave used phase screens to represent the atmosphere distributed across
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the path of propagation. Split-step is the numerical equivalence of this
process: we will segment the propagation path into a set of screens
which we will numerically propagate a wave through.

We present a visualization of the split-step simulation in Fig-
ure 3.13. The split-step method is able to match atmospheric statistics
and produce realistic generations of images for a wide variety of sim-
ulations. We present a step-by-step process of the simulation method,
elaborating on the details throughout Chapter 3.5.

1. Phase screen generation. The first and arguably most important
step is the generation of the numerical phase screens. These phase
screens set aspects of turbulence strength and imaging geometry.
We will consider a set of phase screens {ϕi}.

2. Numerical wave propagation. Once the phase screens are gen-
erated, a point source is modeled and propagated through the
series of phase screens. This is done by numerical wave propa-
gation (via Fresnel or alternative methods) followed by a phase
imparting step, directly following Equation (3.16). We emphasize
a key point here: this point source generation and propagation is
performed per-pixel.

3. PSF formation. With the wave propagated to the aperture plane,
we apply the PSF formation equation Equation (2.61) and accord-
ingly apply it in an incoherent or coherent fashion.

As noted, the operation of numerical wave propagation is done per
pixel. This utilizes the superposition property of wave propagation.
This represents the main computational bottleneck of split-step.

3.5.3 Generating Phase Screens

The first step of the split-step propagation is the generation of the phase
screens {ϕi}. As the name suggests, a phase screen is a 2D function
of the phase that should be imparted to the incident field to generate
the field at the next step. Since the phase screen is a random field, it
needs to be sampled from a probability distribution.

The distribution for the phase screen, in most of the literature,
is assumed to be a multivariate Gaussian [22]. If we discretize the
continuous phase screen as a finite size array, then we are essentially
drawing a random vector from a high-dimensional Gaussian distribu-
tion. Since a Gaussian is fully characterized by the correlation matrix
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Figure 3.13: Visualization of split-step. A point source (more generally
a grid of point sources) is propagated through numerically generated
phase screens, traveling between the phase screens by Fresnel propaga-
tion.

(or the power spectral density in the Fourier domain), we can use the
results such as the Kolmogorov power spectral density. An example of
generating a phase screen is presented below. The result of a phase
screen from this process is presented in Figure 3.14.

Example. (Drawing a Random Field from the Kolmogorov
PSD.) Like a one-dimensional random process, drawing samples
from a given power spectral density can be done in the Fourier do-
main. Denote Γn as the correlation matrix with the (i, j)th entry
being [Γn]ij = Γn(ri − rj) for coordinates ri and rj . The Fourier

relationship Γn(r)
Fourier←→ Φn(k) implies that Γn is diagonalizable

using the discrete Fourier transform F:

Γn = FΦnF
H ,

where Φn is a diagonal matrix representing the power spectral
density. The (i, j)th entry is [Φn]ij = Φn(ki,kj).

To draw a zero-mean Gaussian random field y according Γn,
we can start with a white noise vector w ∼ Gaussian(0, 1), and
multiply it with

y = FΦ
1
2
nw.
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Then, one can show that E[yyT ] = Φn.
A piece of short MATLAB code to simulate the two-dimensional

random field is given below. The generated random field is shown
in Figure 3.14. In this example, we assumed C2

n = 10−16m−2/3

and we use a normalized coordinate |k| ∈ [0, 1].

(a) Power spectral density (b) Random field
Φn(k) = 0.033C2

n|k|−11/3 Sample drawn from Φn(k)

Figure 3.14: Kolmogorov power spectral density and a random realiza-
tion of the random field generating from the Kolmogorov PSD.

% MATLAB code

[kx, ky] = meshgrid(linspace(-1,1,512));

PSD_kolm = 0.033*1e-16*(sqrt(kx.^2+ky.^2)).^(-11/3);

w = randn(size(kx));

phi = ifft2(sqrt(PSD_kolm).*w);

imshow(abs(phi),[]);

Additionally, we must carefully consider the sampling of the phase
screens. The sampling must be done so that (i) the sampling require-
ments for the phase screens are met and (ii) the sampling criterion for
the aperture plane is also satisfied. A full discussion of this balance is
provided in [45]. A standard approach towards meeting this criterion
is the Voelz criterion for the phase screens [58],

∆x =
λL

sD
, (3.58)

with s ≥ 4.
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These considerations are still not enough to properly sample a
phase screen. The Kolmogorov PSD is often underrepresented in the
low frequency terms due to sampling due to the decay near the small
frequencies. The phase screens empirical structure function will not
match the desired theoretical description (see Schmidt [45] Figure 9.3).
To fix this, one may perform subharmonic generation which adds extra
terms to the phase screen which models the low frequency components.
The sampling of these phase screens, and which frequencies should be
chosen, again must be done in coordination with other sample spacings
in the system.

3.5.4 Numerical Wave Propagation

Wave propagation is the process by which the wave traverses the at-
mosphere, thus it must be a component of our simulation as well. Our
modeling of numerical wave propagation will take place between each
phase screen. This is the reasoning behind the name “split-step”, the
steps of wave propagation and phase imparting are split apart.

Consider a point source located in our object plane defined at
location u = 0. We will model this by the assignment of this location
to be U0(u) = δ(u). With this, the Fresnel integral of Equation (2.30)
for a distance of zi away is given by

U1(ξ) =
ejkzi

jλzi
e
j k
2zi
|ξ|2

. (3.59)

This result is sufficient for a point source, however, what should we do
with the field after we propagate it to our first phase screen when it is
no longer a point source? This leads us to write the Fresnel integral in
a slightly different way than before

Ui+1(ξ) =

∫
Σ

Ui(u)
ejkzi

jλzi
e
j k
2zi
|ξ−u|2

du, (3.60)

where we note that this also applies to the original propagation of
a point source. Examining this equation, we notice this is simply a
convolution. This gives us a new perspective of the Fresnel equation:
Fresnel propagation is given by convolution with a spatially invariant
kernel. This motivates us to define the Fresnel kernel,

hFres(ξ; z) =
ejkz

jλz
ej

k
2z |ξ|

2

. (3.61)
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Viewing Fresnel propagation as a convolutional kernel simplifies
our analysis. Specifically, for any wave distribution at a particular
propagation distance, we may compute the field distribution at a fur-
ther distance by Fresnel kernel in Equation (3.61). The wave propaga-
tion including phase screens will then be achieved by

Ui+1(ξ) = [hFres(ξ; z)⊛ Ui(ξ)]e
jϕi(ξ). (3.62)

It is worth noting that the propagation (3.62) is notationally simplistic
to write in this form, however, computationally we typically opt for
angular spectrum propagation [11, 45]. Without going into too many
details, the idea of the angular spectrum is to decompose a wave by
a sum of plane waves. The propagation of a planar wave is simple to
write, therefore, if we know the decomposition the propagation rules
become easier. Mathematically this can be understood to be a Fourier
decomposition.

3.5.5 Image Formation

After propagating our wave through a series of phase screens it will
be incident upon our aperture. We will refer to this as UM+1(u). We
must then model the wave passing through the lens-aperture system,
then propagating to the sensor plane.

We can say our incident wave can be written as

UM+1(ξ) = A(ξ) exp

{
j

(
k|ξ|2
2L

+ ϕ(ξ)

)}
. (3.63)

Here we have simplified the terminology somewhat through A(ξ) and
ϕ(ξ) which are the amplitude and phase of the resultant split-step prop-
agation steps. We wish to emphasize this point a bit further as it will be
important for the next Chapter. We will refer to ϕ(ξ) as a phase real-
ization if it is representative of the phase of a wave propagated through
turbulence. Notice this is slightly different than a phase screen, which
models a Chapter of the atmosphere’s phase contribution.

At this point, we need to remove the Fresnel pattern in order to
access the turbulence phase distortion ϕ(ξ) directly. This leads us to
recall the thin lens equation

U ′M (ξ) = tlens(ξ)UM (ξ), (3.64)

with our goal being that the response of the lens makes the following
to be true,

U ′M (ξ) = A(ξ) exp{jϕ(ξ)}. (3.65)
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If the lens is chosen such that tlens is the complex conjugate of the
Fresnel pattern, then it will cancel out this portion of the wavefront.
Thus, we choose the lens response to be

tlens(ξ) = exp

{
−j k|ξ|

2

2L

}
. (3.66)

Here we have assumed that the lens cancels the Fresnel pattern and
will focus the incident wave to the focal plane. Typically, through
careful construction of the point source, we can assume that A(u) = 1
[59]. This leaves us with the standard PSF equation we have presented
before,

|h(x)|2 = Fourier{P (ξ)ejϕ(ξ)}. (3.67)

Throughout our derivation we have fixed x = 0, therefore, the gener-
alization of this result is the familiar equation

|hu(x)|2 = Fourier{P (ξ)ejϕu(ξ)}. (3.68)

How should we model the phase’s dependency on u? We pro-
vide a visualization in Figure 3.15. This figure implies that nearby
point sources will share components of the same phase screens. This is
exactly the mechanism that will model the correlation. For practical
implementation, the approach is often to generate large phase screens
and propagate through paths over the same grid size whereas in our vi-
sualization the propagation window, represented by the cone, “grows”.
We suggest the reader to [59] for a sense of how this process is done
in practice. This figure also showcases why each point must be propa-
gated individually. With the PSFs generated from this process, we can
then take the spatially varying convolution

Ii(x) = |hu(u)|2
u
⊛ Ig(x), (3.69)

to receive our output image.

3.5.6 Pseudo-Code for Split-Step

For the sake of clarity, we present a pseudo-code description of the
split-step algorithm for a grid of point sources. For a full elaboration
of the details and additional considerations, we point the reader towards
[60, 59, 45, 80].

Summarizing this pseudo-code, we first generate phase screens of
varying size, in accordance with Figure 3.13. As we move from point
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Figure 3.15: Visualization of how correlations arise in split step. The
more overlap between the propagation paths of two points, the more
correlated their output phase realizations, and thus their PSFs, will be.

Algorithm 1 Split-Step Simulation

1: Set sampling parameters for object plane space ΩU

2: Determine the size in meters for each phase screen
3: Generate M phase screens at specified sizes according to PSD
4: for u ∈ ΩU do
5: for i = 1, 2, . . . ,M do
6: Ui(ξ;u) = [hFres(ξ; z)⊛ Ui−1(ξ;u)]e

jϕi(ξ;u)

7: end for
8: Form PSF, |hu(x)|2 = Fourier{P (ξ) · UM (ξ)}
9: end for

10: Perform spatially varying convolution Ii(y) = |hu(x)|2
u
⊛ Ig(x)

source to point source, we will propagate through different slices of the
atmosphere. This will result in each PSF being different, though the
overlap will contribute to the desired correlation. The simulation is
completed once every PSF has been formed and the spatially varying
convolution is computed.

3.6 Summary

With the details of turbulence discussed, we presented a simplified flow
of how images are formed through turbulence. The process can be
summarized into four parts:

Part 1 Atmospheric model: We began by discussing the turbu-
lent nature of the atmosphere and characterized its fluctuations as a
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Gaussian process. The Kolmogorov PSD was presented, along with
its according structure function Dn(r) = C2

n|r|2/3. This additionally
led us to describe C2

n, a parameter that characterizes the strength of
turbulent fluctuations.

Part 2 Propagation through turbulence: The layered atmospheric
model was introduced and utilized to arrive at our main result of the
phase structure function Dϕ(|ξ − ξ′|) for propagation through a sin-
gle layer of turbulence. This was then generalized to multiple screens,
each of which may have different turbulence strength values. We also
discussed the wave structure function, the more general version of the
model for a wave propagated through turbulence.

Part 3 OTF and other properties: The result of our analysis
produced the structure function of the phase, Dϕ(ξ, ξ

′) = 6.88(|ξ −
ξ′|/r0)5/3. This led us to define the Fried parameter r0 as well as the
isoplanatic angle θ0, both of which are insightful statistics for turbulent
imaging. Additionally, the LE and SE OTFs were presented, charac-
terizing the effects within the context of Fourier optics.

Part 4 Split-step simulation: The method of simulation by split-
step propagation was presented. Split-step works by assuming thin
layers of turbulence, known as phase screens, to model the atmosphere
in discrete slices. Waves are numerically propagated through the slices
to form the resultant phase realizations and images.
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4. Propagation-Free
Modeling and Simulation

Thus far, this book has largely derived from more traditional op-
tics considerations, which we’ve done intentionally. With the funda-
mentals established, the time to begin the “translation” of optics into
computer vision has come. This will lead us to formulate the previ-
ous Chapter in terms of standard engineering concepts such as random
vectors and basis representation.

4.1 Motivation

In the previous Chapter, the model for atmospheric turbulence was
presented along with the simulation approach of split-step. Split-step
clearly arises as a natural extension of the model where we are discretiz-
ing the forward process of nature. The present Chapter, however, is
dedicated to alternative models. Before presenting these alternatives,
we would like to present why such a need exists depending on who you
ask.

4.1.1 What’s Wrong with Split-Step?

First, we must admit, there is really nothing significantly wrong with
split-step. In fact, it is arguably the most general model; the alterna-
tives we present will leave out effects which split-step can represent.
One must remember that the authors are imaging people – we want
to use split-step for something more than forward simulation! To us,
split-step poses the following challenges:
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1. Generation of a dataset. The cost of generality and accuracy
is the speed at which split-step can run. One of our papers led
us to estimate the time to generate a dataset suitable for training
one of our networks, one only needs to wait approximately 150
years [43]! This is clearly unsuitable for generating training data
with moderate computational resources.

2. How to plug into an end-to-end framework? If we wanted
to insert split-step into a network, how would we propagate the
gradient for the loss term? Following a gradient through the
method would offer many challenges and, if even possible, slow
the training tremendously. As a result, split-step cannot be used
as an innate prior at present time.

From our perspective, a perfect simulator would be one which
has generality, the ability to generate a dataset, easily allows gradi-
ent computation, and maintains accuracy. It is likely that one must
compromise on at least one of these properties.

4.1.2 Diagnosing the Problem and a Solution

Is it possible to point at one aspect of split-step and blame it for the pain
we are suffering on the applications side? The authors have considered
this point in detail over the last 5 years and have come to the following
conclusion: the numerical wave propagation is to blame!1

Split-step requires each point source to be numerically propagated
through a series of phase screens. This requires M + 1 2D FFTs for
each point source on an N × N grid. Then, we must model the PSF
formation, requiring an additional FFT. This results in N2(M +2) 2D
FFTs and a spatially varying convolution. If we can avoid taking so
many FFTs, this will save us a great deal of computation.

This puts us in a difficult predicament. We have identified the
problem as numerical wave propagation. However, the problem we
want to study is wave propagation through turbulence. How can we
resolve these two seemingly conflicting desires?

This leads us to make the following problem statement: if we can
generate a set of phase functions without numerical wave propagation

1Our confidence in blaming numerical propagation now is much more certain
than it was in 2018. We also say this in good humor, the reasoning for doing wave
propagation is of course well justified!
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then our problems would be overwhelmingly solved. As one may antic-
ipate, this introduces a whole new set of issues, however, it will avoid
our main issues with numerical wave propagation.

This “skipping” of numerical wave propagation is exactly what the
simulator proposed by the authors and collaborators achieves. What is
more is that the accuracy is still guaranteed to be high, though there
are a few carefully considered approximations that are unavoidable at
this time. Our model also does not incorporate amplitude effects such
as scintillation, however, this is in line with the previous Chapter’s
discussions. We are not alone in such an endeavor, as there are many
other alternatives to split-step which in many ways go about solving
the same or related problems. Some rely on the split-step methodology
more than others, though overwhelmingly the idea is the same: the
goal is to skip straight to the phase or image effects and still maintain
accuracy. This leads us to define these methods as propagation-free
methods, methods that do not require numerical wave propagation.

4.2 A Survey of Propagation-Free Methods

The source of propagation-free methods is a combination of the optics
and computer vision communities. This is in stark contrast to split-
step, which was primarily developed within the physics/optics commu-
nity. A purely optics-inspired method may present a disadvantage to
someone interested in computer vision due to speed. If one desires a
large amount of training data for the purposes of machine learning,
split-step will likely not be suitable for this task [43, 42]. Propagation-
free methods are typically motivated by speed, though the end appli-
cations may vary. These different end goals inspire different varieties
of propagation-free simulations.

4.2.1 Simplistic Models

A natural starting point for alternative simulations is what we shall re-
fer to as zero-order approximations. These methods are often used as
a proof-of-concept type simulation in place of a more sophisticated sim-
ulator. These methods are inspired by the fact that turbulent images
have two characteristics: they are distorted geometrically and blurry.
The standard way to do this is that given an image that represents
Ig(u), the pixels are shifted randomly (per pixel) by a 2D Gaussian
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Figure 4.1: In these methods, a spatially variant pixel shifting and
spatially invariant blur are applied to produce an image that shares
some similarity with turbulent imagery. Source: [81]

vector. After this, a Gaussian blur is applied to the image. The meth-
ods by Chak et al. [81] and Lau et al. [82] both utilize such a model,
though the contributions of these papers are more on the restoration
side, with their simulation methodology being used more for proof-of-
concept. We present a figure from Chak et al. [81] in Figure 4.1.

These methods may indeed produce images that are geometri-
cally warped and blurred. However, the same statistics that arise in
the Kolmogorov model are clearly not represented in this framework.
For these reasons, we typically suggest other methods to be utilized for
simulation. That being said, the concept of pixel shifting and blur is
useful in turbulence restoration as in the case of [82, 81] and Zhu and
Milanfar [83]. We should note that this concept of splitting the opera-
tors of pixel shifting and blurring in itself and keeping the operators to
be general is valid, such as done by Zhu and Milanfar [83] and further
elaborated on from the side of simulation in [84]. We’ll return to the
topic of restoration and the use of the geometric warping and blurring
model in Chapter 5.

4.2.2 Direct-to-Image Methods

The simplistic model uses the concept of pixel shifting and blur, though
the ways in which these two elements are modeled are minimally depen-
dent on the underlying physics. There are, however, ways to introduce
the physics into the image formation process without going to the phase
domain. By this, we mean that our goal is not to model ϕx, but to
model its resultant PSF |hx|2 directly. This may feel as if it contra-
dicts some of the previous discussions in Chapter 3 – we said there was
no straightforward model of the PSF! However, we do know certain
things about it, such as the long and short exposure functions which
are closely related to the average PSFs. For these reasons, we refer to
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Figure 4.2: [Left] Two simulated images and [Right] real images with
corresponding turbulence strength from the NATO dataset. Source:
[85]

these methods as direct-to-image methods.
There exist some simulations within this space such as that by

Repasi andWeiss [86, 85], Leonard et al. [87], or Potvin et al. [88] which
use a blend of analytic and empirical properties (the empirical aspects
partially based on the NATO RTG-40 dataset [89, 90]) to simulate
PSFs and the subsequent images directly. The NATO dataset used
various measurement devices, with one example being scintillometers
to measure the effective turbulence level by providing an estimate for
C2

n. This makes it an incredibly useful collection of data for the sake
of simulator verification.

We present some images from Repasi andWeiss’s paper that show-
case some results from the NATO project (Figure 4.2) in which real
and simulated images are compared (a digital ground truth is used for
producing the simulated images). Leonard et al. [87] uses a similar
approach that utilizes empirical results from the NATO dataset which
we present in Figure 4.3.

These methods are similar in their approach, so we will speak a bit
generally to include them under the same description. These methods
use pixel displacements, similar to the simplistic models, however, the
variance of the pixel displacement is given as a function of C2

n, wave-
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Figure 4.3: [Left] Simulated results for different turbulence strengths
which correspond to [Right] field data. These results also utilize the
NATO dataset. See [87] for more one-to-one comparisons and C2

n in-
formation. Source: [87].

length, distance, etc. The result is displacements that more closely
match true turbulent cases. The pixel shifts are also drawn in a cor-
related fashion. With respect to the blur, both methods use the short
exposure function as a mean width value for the blur size (i.e. the SE
transfer function can be mapped to a SE PSF which is the average blur
of centered PSFs) which is approximated as a Gaussian. The width is
then allowed to vary in a patch or pixel-wise fashion. The result is a
spatially varying blur that fluctuates similarly to turbulent cases.

These simulation methodologies have been revisited more recently
by Miller et al. [91, 92]. We would point the interested reader to Figure
1 of Miller et al. [91] for a clear and concise visual description of their
processing pipeline. The concept is similar, but we wish to emphasize a
few key elements of these works. Firstly, a camera model is introduced
in [91] which allows for the incorporation of temporal information in
the imaging process (such as longer / shorter exposures) as well as
sensor and post-processing effects, effectively modeling the entire image
signal processing (ISP) pipeline. These papers also demonstrate the
dependence of the image realization on a random seed, which produces
three random fields, two for pixel shifts and one for the PSF blur width.
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Figure 4.4: Results from the brightness function model with increasing
D/r0 (all simulated). Source [94].

This work also models temporal effects, which allows turbulence to
vary over the acquisition time of an image which introduces additional
blurring that is present in real imagery.

4.2.3 Ray Tracing Methods

There are other propagation-free methods which we refer to as ray-
tracing, the first of which is known as the brightness function simulation
[93, 94, 95]. The brightness function model is faster than split-step as
a result of its lack of wave propagation evaluation, instead propagating
“bundles” of rays through a perturbing medium. These bundles of rays
are then distributed across the imaging plane for each pixel as a function
of the medium, resulting in spatially varying effects as a function of
the phase screens. Given certain choices in simulation parameters, the
approach may be considerably faster than split-step.

We will not provide such a detailed account of this model as in
the case of the previous discussion. The reason for this is that it is
mostly similar to split-step, with the propagations being replaced with
ray tracing. However, we would like to emphasize that this is more
easily said than done with the main theoretical basis of this simulation
with Vorontsov et al. [93] being a testament to this fact.

More “standard” ray tracing (i.e., those other than the bright-
ness function) have been applied for the simulation and modeling of
turbulent effects on an imaging system. Voelz et al. [96] provides an
analysis of standard ray tracing approaches, with carefully performed
ray tracing matching wave optics simulations to a suitable degree of
accuracy for most applications. Additionally, a comprehensive work on
a similar simulation modality is described by [97] and made publicly
available (see paper for details).
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4.2.4 Other Methods

There exist methods outside of these clear boundaries. For example,
Hunt et al. [98] suggested an empirical PSF generation method by
a dictionary of PSFs obtained by SVD. This particular approach is
unique in that the PSFs decomposed by SVD were obtained in a real
imaging scenario, thus incorporating real data into the generation step.

In recent years, deep learning methods are becoming popular.
Generative models such as generative adversarial networks (GAN) have
shown impressive results in synthesizing various image distortion ef-
fects, even within the field of atmospheric turbulence such as Feng et
al. [99]. Our argument against GAN is that the GANs reported in the
literature so far are still black box algorithms. Besides being not eas-
ily interpretable, these methods also lack robustness and generalization
capability when handling unseen turbulence conditions. Furthermore,
verifying the turbulence statistics remains a challenge because we can-
not assess the validity of the steps inside the algorithm. The statistical
model is in the wave space, while GAN models typically are designed to
produce effects in the image space. Therefore, theoretical comparison
is not feasible for a GAN of this variety as the turbulent model is given
for a wave and not an image, with the exception of a few cases as a
result of temporal averaging.

4.2.5 Phase-Based Simulation

In direct-to-image simulation, generated random fields described prop-
erties of the distortions in the image domain. Phase-based simulation
is similar in this sense, however, instead the distortions model the phase
domain. One may wonder why would this be preferred over the direct-
to-image approach. The phase domain requires a conversion through
the image formation equation, whereas direct-to-image requires no ex-
tra computation.

The answer is that the statistics are described not in the image
domain, but in the phase domain! Therefore, if we wish to derive
various properties and verify directly with the developments stemming
from Tatarskii, it will be most easily done in the phase domain. These
methods have been used for empirical study [40, 100], however, often
only for a single point. This won’t do us much good for simulating
images under anisoplanatic conditions, i.e., conditions that are not
isoplanatic.

One may suspect that if we know the Kolmogorov power spectral
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density, the phase realizations can be drawn directly from the corre-
lation matrix (or the structure function Dϕ(ξ, ξ

′) as we presented in
Chapter 3). However, the structure function of the phase only de-
scribes the phase realization which emerges from a single point u in
the object plane. It does not tell us how the phase functions ϕu(f) and
ϕu′(f), located at u and u′, are related to one another. Thus, moving
towards simulating images will require additional considerations.

This is the exact problem that was considered by the authors and
collaborators in a series of publications [41, 42, 43, 101]. As a result,
we are intimately familiar with the ideas that generated this simulator,
which we refer to as Zernike-based simulation. The rest of this Chap-
ter will be dedicated largely to understanding this variety of simulation,
partly due to our familiarity with it but more for another reason. This
method is fundamentally motivated for use in image processing, there-
fore, the tricks and language used to describe it comes from this lens.
Therefore, describing this simulation will serve as a tool for interpret-
ing Chapter 3 through a more image processing/computer vision lens.
Our coverage will be reasonably detailed, but not complete; if one re-
quires more details, we would refer them to our previously mentioned
publications.

Moving to the high-level details, Zernike-based simulation wishes
to simulate the familiar image formation process

Ii(x) =
(
|Fourier{P (ξ)ejϕu(ξ)}|2

u
⊛ Ig

)
(x), (4.1)

where ϕu(ξ) is a spatially varying phase realization that arises from the
propagation. It is important to note that a phase realization (or phase
function) is different from a phase screen, therefore we will reserve the
term “phase screen” to describe the phase screens used in split-step.
The phase function is defined across the aperture, whereas a phase
screen represents a section of the atmosphere along the propagation
path.

These phase realizations have two important properties in the case
of atmospheric turbulence: (1) Their structure function is described
through the Kolmogorov model (or its related models); (2) They are
correlated spatially. Our goal, as previously stated, is to maintain these
two properties without numerical wave propagation. For each point u
in an image, there is an associated point spread function

|hu(x)|2 =
∣∣∣Fourier{ejϕu(ξ)

}∣∣∣2 , (4.2)
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where we have dropped some constants for brevity. This means for
each point in the image, there is a corresponding phase function ϕu(ξ)
and point spread function |hu(x)|2. Using Equation (4.2) to interpret
our desired statistical properties, if we can generate the per-pixel phase
functions ϕu(ξ) and ϕu′(ξ) from the specified distribution then we will
have achieved our goal.

Figure 4.5: The collapsed phase-over-aperture model by Chimitt and
Chan [41]. The idea is to compress the propagation path into a single
abstract volume where each location has its own phase function and
corresponding PSF. We note this differs conceptually from a phase
screen.

The above argument leads to a conceptual diagram shown in Fig-
ure 4.5. In this figure, the information contained in the set of phase
realizations is embedded into the Zernike space (referred to as a col-
lapsed phase screen in [41]). For each location u in the Zernike space
there is a phase realization ϕu(f), related to the PSFs |hu(x)|2 by Equa-
tion (4.2). The resulting image can be formed by performing a spatially
varying convolution:

I(x) = |hu(x)|2
u
⊛ Ig(x), (4.3)

where Ig(x) is the geometric image and I(x) is the turbulence distorted
image.

This Chapter serves to address the following questions which must
be answered to enable this variant of simulation:

1. How do we generate the phase functions ϕu(ξ) at each u? This
is the premise of the Zernike space model. If we cannot gener-
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ate the phase functions ϕu(ξ), then there is no way that we can
construct the PSFs hu(x). We shall address this problem using
a representation technique known as the Zernike polynomials.

2. How do we enforce the spatial correlation of two phase functions
ϕu(ξ) and ϕu′(ξ)? Again, this is a critical part of the method.
If we cannot draw spatially correlated phase functions, we will
defeat the purpose of skipping the wave propagation steps. To
articulate this question, we will introduce few powerful results
in the literature about the angle of arrival statistics, together
with a mirroring technique, to develop a so-called multi-aperture
approach.

3. Given that we may develop the model to represent turbulent
distortions, how should we implement the method to be fast?
Our main issue with split-step is its speed, therefore, we’d want
Zernike-based simulation to give us a significant increase in speed.

Thus, Chapter 4.3 and Chapter 4.4 will be dedicated to these more the-
oretical considerations while Chapter 4.5 addresses the final question.

4.3 Representing Turbulent Phase Realizations

4.3.1 Phase as a Basis

The last Chapter presented two ways to represent the phase:

ϕ(ξ) = k

∫ L

0

n1(ξ, z) dz (the definition),

ϕ(ξ) = Fresnel[L/N ]{eϕNFresnel[L/N ]{· · · }} (via split-step),

with L as the propagation distance and N as the number of phase
screens in split-step. Note that the split-step propagation expression is
a sequential application of free-space propagation followed by phase im-
parting. Both of these representations were utilized in the last Chapter,
though they present a few challenges: (1) lack of clarity for informing
a prior model; (2) the statistical properties of each are a bit unfamil-
iar to the standard computer vision researcher, such as the structure
function; (3) the extension to multiple phase realizations is unclear.

This leads us to instead formulate the phase in a different way
through the concept of basis representation of a function. A basis
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representation allows us to write ϕu(ξ) as

ϕu(ξ) =

N∑
j=1

au,jZj(ξ), (4.4)

for some basis functions {Zj(ξ) | j = 1, . . . , N} and some basis coef-
ficients {au,j | j = 1, . . . , N}. Equations of this form are ubiquitous
in computer vision. If we recall the classical Fourier expansion of a
function, a continuously differentiable function f(t) with bounded en-
ergy can be written as a linear combination of complex exponentials:
f(t) =

∑N
n=1 anZn(t), where Zn(t) = exp{j2πnt/N} is the Fourier

basis, and aj = ⟨f(t), Zn(t)⟩ is the Fourier coefficient. The benefit of
expressing the function f(t) in terms of the Fourier basis is that it al-
lows us to describe the function using a low-dimensional representation.
Thus, if we can generate the coefficients {an |n = 1, . . . , N}, we can
represent the function f(t).

Going back to the phase function ϕu(ξ), the function Zj(ξ) is
the basis representation of the phase. Unlike the phase function ϕu(ξ)
which is location dependent (hence spatially varying), the basis function
Zj(ξ) is spatially invariant. Two phase functions ϕu(ξ) and ϕu′(ξ)
differ in their basis representation only by the coefficients au,j and au′,j .
Addressing the notation au,j , the first index u denotes the location
whereas the second index j tells us which basis function are we using.
We will refer to the vector au = [au,1, . . . , au,N ]T to describe the vector
of basis coefficients at location u.

4.3.2 Zernike Basis

How do we pick an appropriate basis function Zj(ξ)? The phase func-
tion ϕu(ξ) is defined over the aperture, and the aperture is usually
circular in shape. As such, the basis functions Zj(ξ) must also be a
function defined over a circle.

Our choice of the basis function Zj(ξ) is the Zernike polynomials.
The Zernike polynomials are two-dimensional orthogonal functions de-
fined over the unit disk. The Zernike polynomials are mathematically
well defined and there are tools to handle these mathematical objects.
Furthermore, the work of Noll [39] utilized the Zernike polynomials
to represent the phase with some important additional comments and
small corrections by Roddier [40] and Wang et al. [102]. Noll’s paper
represents the starting point of the simulator developed by the authors
and collaborators.
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To work with Zernike polynomials, it is more convenient to switch
from Cartesian coordinate ξ = [ξx, ξy]

T to the polar coordinate ϱ =
[r, θ]T , where ξx = r cos θ and ξy = r sin θ. Moreover, with Zernike
polynomials, we prefer to work with unit norm vectors because the
domain of the Zernike polynomials is the unit disk. To this end, we

define R
def
= D/2 as the aperture radius and scale r to r = Rρ so that

0 ≤ ρ ≤ 1. With these notations, the phase function ϕ(ξ) can be
written as ϕ(Rρ) where ρ = [ρ, θ]T and Rρ = [Rρ, θ]T . In terms of
mathematical expressions, we can write

ϕu(Rρ)︸ ︷︷ ︸
=ϕu(ξ)

=

N∑
j=1

au,jZj(ρ)︸ ︷︷ ︸
=Zj(ξ)

. (4.5)

Before we look at the equations of the Zernike polynomials, we
first show the shape in Figure 4.6. Among the different orders, the
base Z0(ρ) is the constant offset which can be neglected for incoherent
imaging. The first and the second Zernike polynomials Z1(ρ) and Z2(ρ)
are known as the x-tilt and the y-tilt respectively. It is worth noting in
some literature these are referred to as tip and tilt, respectively, though
for clarity we prefer the former terminology. Other high order Zernike
polynomials include astigmatism, coma, spherical aberrations, etc.

Figure 4.6: The shape of the Zernike basis functions, and their cor-
responding equations. Source: https://en.wikipedia.org/wiki/

Zernike_polynomials.

As indicated by the table in Figure 4.6, the Zernike polynomi-
als are indexed by their azimuthal order m and their radial order n.
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Thus, the pair (m,n) specifies the particular Zernike polynomial we
are describing; m tells you how far out from the “center line” to go
and n tells you how many rows down from the top. This leads to the
notation Zm

n (ρ), however, it is often easier to work with a single index
j with notation Zj(ρ) as we’ve written previously. In this book, we
follow Noll’s paper [39] that maps (m,n)→ j whose formula is skipped
for brevity. With this mapping, the Zernike polynomial is defined as
(recall that ρ = [ρ, θ]):

Zeven j(ρ) =
√

2(n+ 1)Rm
n (ρ) cos(mθ), m ̸= 0,

Zodd j(ρ) =
√
2(n+ 1)Rm

n (ρ) sin(mθ), m ̸= 0,

Zj(ρ) =
√
n+ 1Rm

n (ρ) sin(mθ), m = 0,

where Rm
n (ρ) is

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s(n− s)!
s![(n+m)/2− s]![(n−m)/2− s]!ρ

n−2s.

There are many other such indexing, thus we do not feel it necessary to
present exactly how the mapping is performed. Though, it is important
to re-emphasize that in this book we indeed use Noll’s indexing scheme
as is common in the atmospheric turbulence literature.

4.3.3 Zernike Coefficients

The Zernike polynomials are defined over the unit circle, therefore, the
inner product must also be defined on the unit circle. To facilitate our
discussions, we denote the circular aperture as

P (ρ) =

{
1, |ρ| ≤ 1,

0, otherwise.

With this circular aperture defined, we can then consider the orthog-
onality principle over the unit circle. If we are given a phase function
ϕu(ρ), we can define the jth Zernike coefficient at location u as

au,j = ⟨ϕu(Rρ), Zj(ρ)⟩P
def
=

∫ 2π

0

∫ 1

0

P (ρ)ϕu(Rρ)Zj(ρ)dρdθ, (4.6)
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where ⟨·, ·⟩P denotes the inner product using P (ρ) as a weight. Statis-
tically, Tatarskii [22] argued that ϕu(Rρ) is zero-mean Gaussian. This
is partially a physics observation, and partially for mathematical con-
venience. If we agree with Tatarskii’s assumption, then the Zernike
coefficients {au,j | j = 1, . . . , N} are zero-mean Gaussians because they
are obtained through linear projections.

Generating the Zernike polynomials and subsequently the phase
function can be done on a computer using customized libraries. In the
example below, we use the Zernike polynomial MATLAB code devel-
oped by Gray [103].

Example. To make this example simple, we fix a location u. We
randomly draw 36 independent Gaussian coefficients {au,j}36j=1

from au,j ∼ N (0, 1/
√
36). The example here is merely for demon-

stration of how the coefficients can affect the shape of the phase.
The phase ϕu(Rρ) is generated using ZernikeCalc [103].

Figure 4.7 illustrates one random realization of the phase distor-
tion function ϕu(Rρ) and the corresponding PSF hu(x). The
MATLAB code is shown below. Here, we over-sample the Fourier
spectrum using fftK = 8 for anti-aliasing. The division ph/2 is
due to the fact that the diameter is 2.

(a) hu(x) (b) ϕu(Rρ)

Figure 4.7: The random phase distortion (b) generated from the ran-
dom Zernike polynomial in a grid of 100×100 (corresponding to a disk
of diameter 2), and its associated PSF (a).

We emphasize that the phase function and the point spread func-
tion shown in 4.7 do not correspond to a wave propagated through

124



4.3. REPRESENTING TURBULENT PHASE REALIZATIONS

Kolmogorov turbulence. The reason is that the coefficients are inde-
pendently sampled – we haven’t put the Kolmogorov model anywhere!
In reality, we shall sample the Zernike coefficients according to some
known statistics which arise from the model of Chapter 3. Only then
will the generated phase realizations and associated PSFs have the de-
sired properties.

N = 100;

fftK = 8;

[P, ~] = ZernikeCalc(1,1);

[ph, ~] = ZernikeCalc(1:36, (1/6)*randn(36,1), ...

N, ’STANDARD’);

U = exp(1i*ph/2).*P;

u = abs(fftshift(ifft2(U, N*fftK, N*fftK).^2));

4.3.4 Intermodal Correlation

As mentioned previously, Noll studied the use of the Zernike polynomi-
als in representing a turbulent phase distortion [39]. Specifically, Noll
asked the question: For a phase realization ϕu(Rρ), what is the correla-
tion E[au,iau,j ]? Due to the terminology of “modes”, this is referred to
as intermodal correlation. This allows one to write the covariance ma-
trix of the basis coefficients for a single phase realization, and thus we
can draw phase realizations that are in accordance with Kolmogorov’s
theory. We additionally note that there exists another possible correla-
tion, which is for two distinct points u and u′, we could ask the spatial
correlation of E[au,iau′,i]. We illustrate the difference in Figure 4.8.

Figure 4.8: Intermodal and spatial correlation of the Zernike coeffi-
cients.

Recalling Equation (4.6), we can show that the joint expectation
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E[au,i au,j ] (at the same location u) is:

E[au,i au,j ] =
1

π2

∫∫
P (ρ)P (ρ′)Zi(ρ)Zj(ρ

′)

× E[ϕu(Rρ)ϕu(Rρ′)] dρdρ′. (4.7)

The main result of Noll’s paper is to evaluate Equation (4.7). Doing so
through the Fourier Transform and usage of the Kolmogorov spectrum,
the joint expectation can be explicitly evaluated as [40]:

E[au,i au,j ] = 2.2698(−1)(ni+nj−2m)/2
√
(ni + 1)(nj + 1)Imimj

× (D/r0)
5/3

Γ[(ni + nj + 23/3)/2]

× Γ[(ni + nj − 5/3)/2]

Γ[(nj − ni + 17/3)/2]Γ[(ni − nj + 17/3)/2]
, (4.8)

if i− j = even and E[au,i au,j ] = 0 if i− j = odd. The indices mi and
ni are the azimuthal and radial orders associated with the ith Zernike
polynomial, and Imimj is an indicator function that gives Imimj = 1
if mi = mj and Imimj = 0 if mi ̸= mj . The normalized correlation
matrix, which we will refer to as the Noll matrix, is shown in Figure 4.9,
where we note most of the other entries are sparse.

Figure 4.9: Inter-modal correlation of the Zernike coefficients

E[au,iau,j ]/
√
E[a2u,i]E[a2u,j ] for a fixed spatial location u.

Through standard random sampling methods, we can properly
sample individual turbulent phase realizations. Consider a multivari-
ate Gaussian random variable with mean E[y] = 0 and the correlation
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matrix Σ = E[yyT ]. In our case, Σ will represent the Noll matrix. To
draw a random vector y from this distribution, we decompose the cor-
relation matrix Σ = LLT via Cholesky decomposition. Then, starting
with a white noise vector n ∼ Gaussian(0, I), the transformed vector
y = Ln will satisfy the desired property that E[y] = 0 with covariance:

E[yyT ] = E[LnnTL],

= LE[nnT ]L,

= Σ.

The Cholesky decomposition is a standard method in various packages
such as MATLAB or NumPy/PyTorch/etc., and thus is readily applied
to the Noll matrix.

The Noll matrix contains off-diagonal entries. One may wonder
if we may diagonalize the matrix by an eigen-decomposition. This is
possible, however, the matrix is paired with the fact that it describes
the coefficients for our Zernike basis. If we wish to diagonalize the
matrix, we will require different basis functions. This type of decom-
position is known as the Karhunen–Loève (KL) decomposition where
the bases are the eigenfunctions of the covariance function. This has
been considered in papers such as Roddier [40]. However, this was also
done earlier by hand for analyzing the probability of getting a lucky
observation by Fried [27]. The KL basis functions are in non-closed
form and accordingly more difficult to work with, therefore, we choose
to continue with the Zernike polynomials.

4.3.5 What’s Missing?

If we wish to describe or simulate the effects on an object observed
through turbulence, it may be tempting to jump to the conclusion that
we are ready to do so with Noll’s result. However, we should recall
that in the case of turbulent PSFs which span an image we require a
spatially variant representation,

|hu(x)|2 =
∣∣∣Fourier{P (ρ)ejϕu(Rρ)}

∣∣∣2
f=x/(λz)

. (4.9)

Here we emphasize the spatial dependency of the phase realizations. As
a result, we must havemultiple realizations of ϕu due to the dependency
on the source location. Noll’s result does not allow such a possibility
because the spatial correlation is missing!
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The work of Noll is a great starting point, however, more work
will be required to draw Zernike samples that are sampled properly in
both intermodal and spatial axes. If we can find this representation,
then we may successfully cut out the numerical wave propagation from
the simulation procedure and allow us to generate samples much faster.

4.4 The Zernike Space

This leads us to formally introduce the Zernike space. The Zernike
space generalizes the concept of a basis function for a single phase
realization to a random vector field which is a collection of basis co-
efficient vectors. While that is easy to say, proper sampling will prove
to be computationally infeasible at present [43]. We will set this issue
aside for now and focus on the concept itself, concluding this discus-
sion with these computational issues and an approximation that avoids
them.

4.4.1 Overview

The Zernike space arises from the consideration that for each point in
the object plane, there exists a phase realization ϕu, each with a Zernike
representation au. Furthermore, each phase realization describes the
PSF |hu(x)|2. However, by our basis representation, the vector au is
also sufficient in describing the PSF. We refer to this set {au} as the
Zernike space.

We present a visualization of the Zernike space in Figure 4.10.
For each point in the image, there exists a vector that is correlated
intermodally and spatially to its neighbors. Thus, the Zernike space is
a random vector field. The two axes of the random fields are spatial
axes while the third axis is the Zernike coefficient axis. Thus, it is
incorrect to say that the Zernike space is a volume, as the notion of
locality is lost in the coefficient axis. It is this problem that will give
rise to a majority of our issues when attempting to generate realizations
of the Zernike space.

The Zernike space allows us to simply state the model that cap-
tures all of the turbulent statistics without having to describe the propa-
gation. Because the turbulence is distributed as a random process, the
Zernike space will accordingly be random. The way we will need to
describe the Zernike space will be through its correlations. This will
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Figure 4.10: Visualization of the Zernike space. For each point in the
image, there exists a Zernike vector, which further defines a vector field.

require work to “bake in” the required properties, though the gain will
be eliminating numerical wave propagation in our computation.

4.4.2 Mirroring

A critical piece of information that would be needed to enable the
Zernike-based approach is the spatial correlation of the basis coeffi-
cients. That is, for a fixed Zernike polynomial order i, we want to find
the joint expectation E[au,i au′,i] for two different coordinates u and u′.
The derivation here is through an approximate analysis by the authors
[41] which is conceptually a bit easier to understand. We later present
an overview of a more general solution.

To begin our analysis, we first generalize the structure function.
To begin, let us recall the structure function, though slightly re-arranged:

Dϕ(Rρ−Rρ′) = 2.91k2
∫ L

0

C2
n(z)

∣∣∣R(ρ− ρ′)(1− z

L

)∣∣∣5/3 dz. (4.10)

Note Equation (4.10) is equivalent to our continuous spherical wave
structure function definition from Equation (3.24). The structure func-
tion Dϕ(Rρ−Rρ′) is defined just by the two coordinates Rρ and Rρ′

which are two points of the same phase function ϕu(Rρ). However,
what we are interested in is the pair ϕu(Rρ) and ϕu′(Rρ). Therefore,
a key step here is to redefine the structure function Dϕ(Rρ − Rρ′) so
that it depends on u and u′. This will allow us to model the case of
two separate phase realizations.

To tackle the problem, we start by considering the geometry
shown in Figure 4.11. The problem of interest is the one shown in Fig-
ure 4.11(a) where we use one aperture to observe two different points in
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the scene. The separation of the two points in the scene is u−u′. If the
distance from the aperture to the object plane is L, the normal vector
pointing out of the image plane will form an angle with u (and another
angle with u′). These two angles are the angle-of-arrival. Though the
angles are typically of interest, we prefer to consider the separation in
the object plane u − u′. Let us then extend the structure function to
include a separation in the object plane, as well as the aperture plane.
This leads us to define a more general structure function [104, 34],

D(Rρ−Rρ′,u− u′) = 2.91k2
∫ L

0

dzC2
n(z)

×
∣∣∣∣R(ρ− ρ′)(L− zL

)
+ z/L(u− u′)

∣∣∣∣5/3 .
(4.11)

The magnitude term within the integrand can be understood through
simple geometry: it is an interpolation between the vector character-
izing the separation in the object plane to the difference vector in the
aperture plane.

Using geometric optics and symmetry, the roles of the object plane
and the aperture can be flipped as shown in Figure 4.11(b). We refer to
such a technique asmirroring. In this new configuration, the separation
u−u′ is translated to the separation of two points in the aperture plane.
Assuming that each aperture has a diameter D, we can define a vector
s such that

Ds = u− u′, (4.12)

according to the symmetry of the mirroring. The vector s tells us how
many units of D is needed for the separation of two points.

Readers at this point may wonder: Why construct such a mir-
ror and map the original problem to the mirrored space? The short
answer is that the spatial correlation in Figure 4.11(b) has been thor-
oughly studied whereas the original one in Figure 4.11(a) is not. In
the prior work of Chanan [105] and Takato and Yamaguchi [106], it
was shown that if there are two different imaging systems looking at
one point in the space (i.e., Figure 4.11(b)), there exists closed-form
expressions of the spatial correlation (of the Zernike coefficients). They
were interested in this problem because for astronomy, large telescope
cameras with multiple apertures are used to observe stars. Therefore,
if we can find this mapping, we can simply leverage the existing results
of Chanan [105] and Takato and Yamaguchi [106].
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(a) Our problem: (b) Chanan [105] and Takato [106]
Two points in the scene Two different apertures

Figure 4.11: Visualization of the geometries of the two types of prob-
lems. The problem we are primarily concerned with is shown in (a),
however, we would like to leverage the results of analysis of the geom-
etry considered in (b).

Going back to the spatial correlation, our intention is to replace
E[ϕu(Rρ)ϕu(Rρ′)] with E[ϕu(Rρ)ϕu′(Rρ′)]. We will then leverage the
two aperture results to solve our problem. Beginning with the expec-
tation, we may write

E[au,i au′,j ] =
1

π2

∫∫
P (ρ)P (ρ′)Zi(ρ)Zj(ρ

′)

× E[ϕu(Rρ)ϕu′(Rρ′)] dρdρ′. (4.13)

Through the definition of the structure function, we may write this as

E[au,iau′,j ] =
−1
2π2

∫∫
dρdρ′P (ρ)P (ρ′)Zi(ρ)Zj(ρ

′)

×D(Rρ−Rρ′,u− u′). (4.14)

Interestingly, it was shown in [41] that if a first-order Taylor approxi-
mation was made upon the magnitude expression at z = L/2, combined
with an assumption of a constant C2

n profile, then the expression may
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be written through mirroring as

E[au,iau′,j ] =
L

25/3π2

∫∫
P (ρ)P (ρ′) (4.15)

× Zi(ρ)Zj(ρ
′)E[ϕu(Rρ)ϕu(Rρ′ +Ds)] dρdρ′.

The impact of the mirroring is that the two phase functions ϕu(Rρ)
and ϕu′(Rρ′) are now changed to ϕu(Rρ) and ϕu(Rρ

′+Ds). The latter
is due to the mirroring analysis.

The result of this is that the problem of angle-of-arrival correlation
has been mapped to the multiple aperture problem. Therefore, the
results of Chanan [105] and Takato and Yamaguchi [106] can be applied
directly for our case. Using the Kolmogorov power spectral density
results in an expression that we present in the following theorem:

Theorem 4.1 (Zernike Spatial Correlation via Multi-Aperture).
Let u and u′ be two points in the object plane. Consider a two-
aperture model with Ds = u−u′ where D is the aperture diameter,
and s is a vector defining the separation. The spatial correlation
of two Zernike coefficients au,i and au′,j is given by

E[au,iau′,j ] ≈
−2.91k2C2

nL

2π225/3

∫∫
P (ρ)P (ρ′)Zi(ρ)Zj(ρ

′)

× |R(ρ− ρ′) +Ds|5/3 dρdρ′, (4.16)

4.4.3 Spatial Correlation of the Tilts

Theorem 4.1 is a general result for all Zernike coefficients. To gain
some insights into how this equation can be used to draw random tur-
bulence samples, we focus on two Zernike coefficients: the horizontal
tilt (characterized by au,2) and the vertical tilts (characterized by au,3).
We are interested in these two coefficients because the tilts occupy the
majority of the energy in the Zernike basis representation. In addition,
the tilt statistics are slightly more manageable to track analytically.

When restricted to au,2 and au,3, the Zernike basis Z2(ρ) and
Z3(ρ) will take a relatively form. Using Chanan’s result [105, Eq. 11],
we can show that for j ∈ {2, 3}, the spatial correlation is given as
follows.
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Theorem 4.2 (Spatial correlation of tilts). The spatial corre-
lation of the 2nd and the 3rd Zernike coefficients (the horizontal
and the vertical tilts) are approximated by

E[au,jau′,j ] ≈
c2
25/3

(
D

r0

)5/3

[I0(s)∓ cos 2ψ0I2(s)] , j = 2, 3,

(4.17)

where c2 = 7.7554, and the minus sign is for au,2 and the plus
sign is for au,3. The coordinate [s, ψ0] is illustrated in Figure 4.12.
The length of Ds = u−u′ is the scalar Ds, where s = |s| and the
angle is ψ0.

Figure 4.12: Notation of the coordinates. The magnitude of ξ is mea-
sured in the unit of the diameter D.

The integrals I0(s) and I2(s) in Equation (4.17) are defined through
the Bessel functions of the first kind:

J0(s) =
∫ ∞
0

ζ−14/3J0(2sζ)J
2
2 (ζ)dζ, (4.18)

I2(s) =

∫ ∞
0

ζ−14/3J2(2sζ)J
2
2 (ζ)dζ, (4.19)

where J0 and J2 are the Bessel functions of the first kind. On com-
puters, these can be defined using built-in libraries. In MATLAB, for
example, we can use commands besselj and integral as shown below.

% MATLAB code to evaluate integrals I_0 and I_2

s = linspace(0,smax,N);

133



CHAPTER 4. PROPAGATION-FREE MODELING AND
SIMULATION

f = @(z) z^(-14/3)*besselj(0,2*s*z)*...

besselj(2,z)^2;

I0 = integral(f, 1e-8, 1e3, ’ArrayValued’, true);

g = @(z) z^(-14/3)*besselj(2,2*s*z)*...

besselj(2,z)^2;

I2 = integral(g, 1e-8, 1e3, ’ArrayValued’, true);

How do we draw the random tilts then? Considering Equation (4.17)
again, we recognize that it defines the correlation matrix.

[Cj ]u,u′ =
E[au,jau′,j ]

E[au,jau,j ]
=
I0(s)∓ cos(2ψ0)I2(s)

I0(0)
, j = 2, 3. (4.20)

In this equation, [Cj ]u,u′ denotes the correlation matrix Cj for j = 2, 3.
The subscript (u,u′) denotes that we are looking at the coordinate
(u,u′). Since the right-hand side of the correlation matrix is described
by the polar coordinate [s, ψ0] of the difference vector s = (u− u′)/D,
the matrix Cj is Toeplitz. This should not be a surprise because the
correlation matrix is homogeneous (aka wide-sense stationary).

A visualization of the correlation matrices [C2]u,u′ and [C3]u,u′

is shown in Figure 4.13. The matrices demonstrate a Toeplitz block
structure because the correlation is two-dimensional. Nevertheless, the
Toeplitz structure is preserved due to its homogeneity.

(a) [C2]u,u′ (b) [C3]u,u′

Figure 4.13: The covariance matrix C2 and C3 for an image of 16× 16
pixels. The size of the matrices are 162 × 162.

Thus far, we have described how the Zernike coefficients au,2 and
au,3 can be evaluated statistically. To finally draw the random tilt, we
still need proper scaling so that the Zernike coefficient can correspond
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to the number of pixels. As mentioned in [105, Eq. 2], the relationship
between the tilt angle αx and the Zernike coefficient is given by

αu,2 =
2λ

πD
au,2, and αu,3 =

2λ

πD
au,3. (4.21)

Since the Nyquist sampling between two adjacent pixels in the object
plane is Lλ/2D, it holds that the tilt angles converted to the number
of pixels in the object are

αu,2 [pixels] =
L · 2λ

πDa2
Lλ
2D

=
4

π
au,2, and αu,3 [pixels] =

4

π
au,3.

Putting everything together, we can show that the un-normalized cor-
relation coefficient of the tilt angles is

E[αu,2αu′,2] =
16

π2
E[au,2au′,2]

=
16

π2

c2
25/3

I0(0)︸ ︷︷ ︸
κ2

[C2]u,u′ , (4.22)

where we defined κ as the constant preceding the normalized correlation
function [C2]u,u′ . For vertical tilts, the relationship is E[αu,3αu′,3] =
κ2[C3]u,u′ .

We are now in the position to draw random tilts. Since the cor-
relation matrix represents a homogeneous process and so that matrix
is block Toeplitz, drawing random samples can be done in the Fourier
domain. The program below is a MATLAB implementation of drawing
random horizontal tilts from the statistics.

kappa2 = I0(1)*7.7554*(D/r0)^(5/3)/(2^(5/3))*...

(2*lambda/(pi*D))^2*(2*D/lambda)^2;

Cx = kappa2*C2;

Cxfft = fft2(Cx);

S_half = sqrt(abs(Cxfft));

b = randn(N,N);

MVx = real(ifft2(S_half.*b))*sqrt(2)*N;

Two examples of the randomly sampled tilt vectors are shown in
Figure 4.14. For the stronger turbulence condition C2

n = 1×10−15m−2/3,
we can observe a strong correlation from one corner of the image to the
other corner of the image. This explains the necessity of drawing the
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C2
n = 1× 10−15m−2/3 C2

n = 2.5× 10−16m−2/3

Figure 4.14: Simulated tilt maps for C2
n = 1× 10−15m−2/3, and C2

n =
2.5× 10−16m−2/3. The tilts are scaled by 2× and skipped per every 8
pixels for display.

turbulence according to the theoretical model instead of a set of i.i.d.
Gaussian random samples smoothed by heuristic operations.

A typical question for a numerical simulator is how do we know
that the random samples we drew are correct? Since these random tilts
are the particular realization of a two-dimensional random process, it
is impossible to take a real image in the field and ask the simulator to
match exactly. The best we can do is to argue from a statistical average
point of view. If we take enough measurements, will the simulator
produce something that would match the known theoretical statistics?

In the turbulence literature, the two commonly used statistics are
the Z-tilt statistics and the differential-tilt statistics. The Z-tilt is
defined as

Z-tilt(u,u′) = E[αu,jαu′,j ], j = 2, 3, (4.23)

whereas the differential tilt is defined as

D-tilt(u,u′) = E[(αu,j − αu′,j)
2], j = 2, 3. (4.24)

For the numerical simulation we just described, we can verify the valid-
ity of the simulator by comparing it against the theoretical statistics.
In Figure 4.15 we show the comparison between the simulator (and its
theoretical limit) and the one derived by Basu et al. [104]. Overall the

136



4.4. THE ZERNIKE SPACE

match between what the multi-aperture simulator can offer and what
we expect it from the angle of arrival analysis in [104, 25]. Therefore,
we can conclude that drawing the tilt without wave propagation has
been successfully implemented.
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Figure 4.15: The theoretical and simulated tilt statistics at C2
n = 1 ×

10−15m−2/3. The curves are plotted versus the number of Nyquist
pixels. The angle-of-arrival is due to Basu et al. [104] as well as Fried
[26], and the multi-aperture is our approximation based on Chanan
[105]. Additionally, we note 20, 000 random realizations were used in
generating the simulated curves.

4.4.4 High-Order Correlations and a General Solution

The previous discussion focused on the tilt coefficients. This is for two
reasons: (1) The tilt coefficients are easy to compare to existing results
which are already due to the study of angle-of-arrival correlations; (2)
the expression for tilt is a bit simpler to write down. To generalize the
approximation, we want to include any pair E[au,iau′,j ], leading us to
present the following theorem which gives the correlations in a slightly
more compact form:

Theorem 4.3 (Spatial correlation of all Zernike coefficients).
The spatial correlation of all Zernike coefficients i, j ≥ 1 is ap-
proximated by

E[au,iau′,j ] ≈ A
√

(ni + 1)(nj + 1)

(
1

2

)5/3

C2
n L fij (s, k0) ,

(4.25)
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where A = 0.00969k2214/3π2/3R5/3, ni and nj are the Noll in-
dices, s = (u − u′)/D, and fij(s, k0) is the integral defined in
Takato and Yamaguchi [106].

This theorem represents the types of correlations utilized in the Zernike-
based simulations [41, 42, 43], though we note that it is still an approx-
imation.

Though we do not list fij directly, it is useful to observe a few
properties of Equation (4.25). Firstly, the correlation depends on the
difference u−u′, thus the field for a single coefficient is WSS. There is
also an angular dependence, thus the correlation functions are anisotropic
in nature. The aperture D also affects the length of correlation – a
larger aperture will induce more correlations while a smaller aperture
will create a more anisotropic effect. Finally, as expected, the prop-
agation distance L and C2

n value influence the variance of the result,
with a higher constant C2

n or longer propagation distance making the
turbulence stronger.

To close our theoretical description of the correlations, the above
problem of Zernike coefficient correlations has been solved without such
approximation in [101] and is written in the following way:

E[au,iau′,j ] = A
√

(ni + 1)(nj + 1)

∫ L

0

(
L− z
L

)5/3

C2
n(z)

× fij
((

z

D(L− z)

)
(u− u′), k0

)
dz. (4.26)

This represents a continuous integration over the path, which is a sig-
nificant improvement over the approximation provided in [41]. It can
be shown that Equation (4.25) is a special case of Equation (4.26) as
described in Chimitt and Chan [101]. These results are similar to a
paper by Whiteley et al. [107] thus we would suggest the interested
reader to either paper for a discussion of the more general approach.

Fortunately, the correlation function one chooses to use (approx-
imate or exact) doesn’t affect how they are used in simulation.

4.4.5 Image Formation and the Zernike Space

The previous discussions highlight how we can describe correlations in
the Zernike space, either through the approximation of (4.25) or (4.26).
We now turn to answering a main question of this book: How can we
understand image formation through the Zernike space?
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To begin, we assume that phase distortions are sufficient in de-
scribing the effects. Recalling our familiar image formation equation,

I(x) = |hu(x)|2
u
⊛ Ig(x), (4.27)

and PSF formation equation (utilizing the Zernike representation)

|hu(x)|2 =
∣∣∣Fourier{P (ρ)ej ∑N

j=1 au,jZj(ρ/R)
}∣∣∣2

f=x/(λz)
, (4.28)

we can combine the two to write

Ii(x) =
∣∣∣Fourier{P (ρ)ej ∑N

j=1 au,jZj(ρ/R)
}∣∣∣2 u

⊛ Ig(x), (4.29)

dropping the resizing terms. Equation (4.29) represents a compact
form of image formation using the Zernike space. Thus, the entire
process can be described with basis decomposition, random vectors,
and spatially varying convolution.

While (4.29) is fairly compact in some sense, we can go a step
further. That is, what if we were able to decompose the PSF into a set
of basis functions, similar to what we did with the phase? If we were
to write the PSF as

|hu(x)|2 =

M∑
m=1

βu,mφm(x), (4.30)

we could then approximate the spatially varying convolution as a sum
of invariant convolutions. The reasons and methodology for doing so
will be described shortly, but the result is the following:

Ii(u) =

M∑
m=1

(φm ⊛ (βm ⊙ Ig))(u), (4.31)

where φm is our invariant basis representation of the PSF and βm are
the coefficients for the PSF basis (which, of course, are related to the
Zernike space). While stating φm or the transform from the Zernike
space to βm will prove to be analytically intractable, we will discuss
how it can be utilized in the context of reconstruction in Chapter 5.

4.5 Zernike-Based Simulation

Much like split-step simulation, it is a numerical interpretation of the
true image formation process. In a similar fashion, the Zernike space is
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a theoretical way of describing the turbulence distortions which we are
presently interested in considering the numerical implementation of.
Therefore, the following discussion is motivated by the computational
difficulties one encounters when attempting to actualize this form of
simulation.

4.5.1 Numerical Challenges

It may seem that we can use Cholesky-based generation to generate
samples of the Zernike space as we did with a single coefficient vector.
When the size of the Zernike spatial grid is small, its covariance is ac-
cordingly small and may therefore be generated using Cholesky decom-
position. However, for a large grid of points, the size of the covariance
matrix may result in the decomposition becoming infeasible. The size
of the correlation matrix for an image of sizeW ×H and 36 Zernike co-
efficients requires the construction of a matrix that is 36HW ×36HW .
For a standard 256×256 image this results in a matrix that is over 2
million by 2 million entries in size! We would have to decompose and
then multiply by this matrix for one realization, motivating us to look
for an alternative.

One important case of numerical generation is that if the corre-
lation structure is WSS, the matrix Σ is circulant and thus the eigen-
decomposition is equivalent to the Fourier transform. In this case,
generating the random vector y can be implemented via

y = US
1
2UTe = F−1(S 1

2F(e)),

where F denotes the discrete-time Fourier transform, and the diagonal
matrix S is the Fourier spectrum of one row (or column) of the corre-
lation matrix Σ. The significance of the homogeneity is that it allows
us to speed up the sampling process by performing all computations
in the Fourier space. In addition, the memory bottleneck is resolved
because we don’t need to construct the full correlation matrix Σ and
run the Cholesky factorization. This is exactly the property we utilized
for generating phase screens in Chapter 3.

This brings us to present two issues. For a single field, the cor-
relation is WSS. Although Equation (4.25) is a function of the spatial
separation u − u′ in the case of a single fii, the entire Zernike space
is not WSS due to the fact that fij is not a function of index dif-
ference i − j. On top of this, we will still need to perform an FFT
for converting the phase realizations into PSFs and spatially varying
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convolution. Therefore, there are many numerical issues that have a
non-trivial path forward to getting this simulation to where it needs
to be for large dataset generation. We will tackle these one at a time,
starting with this issue of a lack of WSS.

4.5.2 Fourier Sampling the Approximate Zernike Space

Although the Zernike space as a whole is non-WSS, there is an ap-
proximation that largely solves this issue [43]. This method utilizes the
insight that for a single coefficient field, the correlation is WSS. This
means that one may generate individual correlation fields correctly,
however, they will be independent from one another. This alone will
not solve our problem as this neglects the intermodal correlation.

To introduce the approximation, we will refer to the matrix which
represents the correlational structure of the ith field with the jth field
as Ai,j . In other words, Ai,j corresponds to a matrix form of fi,j . The
entire Zernike space correlation, which is in the form of a tensor, can
then be written as

A =

A1,1 · · · A1,N

...
. . .

...
AN,1 · · · AN,N

 =

As0 · · · Asp
...

. . .
...

Asp · · · As0

 ,
where here we are showing two “projections” of the same tensor. To
motivate our development, we pose the following question: Can we
generate the fields independently, utilizing the single coefficient WSS
property, then mix them according to some matrix? This question
eventually led to the following scheme for sampling the Zernike space
in an approximate manner:

1. Generate i = {1, 2, . . . , N} unit-variance, spatially correlated ran-
dom fields according to Ai,i. Note this generation uses only
autocovariance functions. At this stage, our N fields are inde-
pendent, thus utilizing the FFT-based method based on their
homogeneity;

2. Perform a point-wise mixing of the random fields according to
the Noll matrix Σ. This mixing is done pixel-wise (across the
coefficient index dimension) per pixel.

This generation process can be written mathematically in the following
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Figure 4.16: A visual representation of the realizations and covariance
structure as it changes through the generation process. White noise
is used to generate independent random fields which are then mixed
according to the index axis covariance. Here, the covariance structure is
of a smaller grid than the random field shown for ease of interpretation.
Source: [43].

way

Ã = L


A1,1 0 . . . 0
0 A2,2 . . . 0
...

...
. . .

...
0 0 · · · AN,N

LT , (4.32)

where LLT = Σ and Ã is regarded as the approximation to the Zernike
space.

We note the resultant matrix is no longer diagonal, however, the
off-diagonal entries will be approximations of the true correlation struc-
ture. This approximation and its impact have been analyzed in [43].
A visualization of the proposed generation process is provided in Fig-
ure 4.16 using a simplistic example in the case of an 8× 8 image with
3 coefficient fields for visualizing the covariance structure. The same
concept presented in this Figure can be extended to the case of an
W ×H image with N coefficient fields.

4.5.3 Approximating Spatially Varying Blur

Invariant convolution may be implemented through the FFT and is
accordingly fast to compute. However, spatially variant convolution
does not have such a simple mathematical relationship, and thus is ac-
cordingly far slower than its invariant counterpart. Therefore, we are
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interested in representing spatially variant convolution and a summa-
tion of invariant convolutions. To this end, we follow the approach
outlined in Mao et al. [42].

To begin, we recall that the PSF |hu(x)|2 is defined per pixel.
This is analogous to the phase, which is also defined per pixel. For
the phase, we decomposed it via the Zernike polynomials, for the PSF
there is no such easy decomposition. However, if it were true, we
could write the following PSF basis representation via basis functions
φ1(x), . . . , φM (x) as

|hu(x)|2 =

M∑
m=1

βu,mφm(x), (4.33)

where βu,m is the mth basis coefficient at pixel location u. Here,
φm(x) is the basis function that will be shared across all the pixel
locations. The coordinate u is embedded in the coefficient βu,m which
is u-dependent.

Since we are interested in spatially varying convolution, we are
inevitably led back to our discussion of scattering versus gathering. As
described in Chimitt et al. [15], gathering results in the following form:

Ii(x) =

M∑
m=1

βx,m (φm ⊛ Ig)(u)︸ ︷︷ ︸
invariant blur︸ ︷︷ ︸

linear combination of invariant blurs

, (4.34)

while scattering results in

Ii(x) =

M∑
m=1

(
φm ⊛

(
βm ⊙ Ig

)
︸ ︷︷ ︸

pixelwise weighted input

)
(x)

︸ ︷︷ ︸
linear combination of invariant blurs

. (4.35)

The difference between these two is subtle, coming down to the order
of operations that are not commutable. That is, do we multiply by the
coefficients first, or do we convolve first? The answer to this question
is given in [15] where scattering was found to be the proper choice for
simulation.

Through (4.35), the convolutions within the summation are spa-
tially invariant. Thus, we can multiply the image Ig(x) by each random
field βm and convolve with the associated basis functions φm. After
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this, summation gives us a spatially varying image, which we depict in
Figure 4.17. The result is a reduction of the computation, now we only
require M 2D FFTs where in Mao et al. [42] M was chosen to be 100.

Figure 4.17: A block diagram that depicts how a pixel is multiplied by
its coefficient vector and convolved with its corresponding basis func-
tions. Their contribution is then accordingly distributed across the
output image. Note that the “receptive field” is larger in the output
image due to the interpretation of scattering.

This argument rests upon the assumption that (4.33) is possible.
This leaves us with two fundamental questions in order to facilitate this
approach: (1) How do we construct the PSF basis functions? (2) How
do we determine the basis coefficients from the Zernike space?

For the PSF basis functions, we can construct them offline via
a supervised learning approach as shown in Figure 4.18. Suppose
that we have run the simulation offline to generate a large set of PSFs
|hu1(x)|2, . . . , |huP

(x)|2 where P is a very large number. These PSFs
can be drawn independently because the goal here is to learn the com-
mon structure of all of them. To ensure sufficient variability, when
generating these PSFs, we can use a wide range of C2

n values so that
the PSFs cover the turbulence conditions from weak to strong.

Given the simulated PSFs |hu1(x)|2, . . . , |huP
(x)|2, we can per-

form a standard principal component analysis (PCA) to determine
the basis functions {φm(x) |m = 1, . . . ,M}. Implementations of the
PCA are available in most of the modern computing libraries and so we
skip it for brevity. However, one thing to note is that the PSFs are the
results of both the tilts and the high-order aberrations. For tilts, using
the PCA to encode the tilt is not cost-effective because the tilts are
simple delta functions in the two-dimensional space. All they do is to
point a pixel to the new location. For such a simple operation, we can
just record them directly without wasting the principal components.
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Figure 4.18: To generate the basis functions {φm(x) |m = 1, . . . ,M},
we first simulate a large set of PSFs hu1

(x), . . . , huP
(x). By running

the principal component analysis, we can determine the basis functions.
Source: [42]

Decoupling the tilts from the high-order aberrations also decouples the
training data from the tilts. This will then reduce the number of train-
ing samples for the PCA. The idea is that for the tilts, we save them
and record their statistics. For the high-order aberrations, we send the
training samples to the PCA to learn the PSF structure.

4.5.4 The Phase-to-Space Transform

With the basis functions φm(x) able to be found computationally, we
now discuss the basis coefficients {βu,m |m = 1, . . . ,M}. The definition
of the basis coefficients is that

βu,m = ⟨|hu(x)|2, φm(x)⟩ =
∫
|hu(x)|2φm(x) dx. (4.36)

However, in the absence of the PSF |hu(x)|2, we need a mechanism to
generate the coefficients βu,m. If we knew the |hu(x)|2 then there is no
problem to solve because the goal here is to generate the PSF!

The correspondence between the Zernike coefficients and a set of
PSF basis coefficients has been considered in the form of the extended
Nijboer-Zernike diffraction theory [108, 109]. This theory is rather el-
egant, however, our PCA basis functions φm will be of no use if we
adopt it. Furthermore, it is unclear whether or not the basis is optimal
for turbulence. Therefore, in [42], Mao et al. produced a learning-
based approach to provide the mapping from {au,n |n = 1, . . . , N} to
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{βu,m |m = 1, . . . ,M}. This network is called the Phase-to-Space
(P2S) Transform. The name Phase-to-Space means that we are con-
verting the phase coefficients to spatial PSF coefficients.

Figure 4.19: A visualization of the Phase-to-Space (P2S) Transform
network. A shallow neural network maps the higher-order Zernike co-
efficients to a set of PSF coefficients. Source: [42].

The P2S framework is shown in Figure 4.19. The idea is train a
shallow neural network that maps the vector a = [au,1, . . . , au,N ]T to
another vector β = [βu,1, . . . , βu,M ]T . The dimension of the vector a
is typically in the order N = 36 whereas the dimension of the vector β
is typically around M = 100. Since the dimension is so small, a simple
fully-connected neural network would suffice for learning the mapping.

How can we train such a transform? If we had a large set of
training data consisting of pairs of Zernike coefficient vectors and PSF
basis coefficient vectors, we could simply train a network to find the
mapping. Here we drop the subscript of position as we are interested
in realizations that are completely independent. Each training sample
will consist of the pair of vectors (a,β), with the Zernike basis coef-
ficient vector a as the input and the PSF basis coefficient vector β
as the output. To prepare the vectors β, we first construct the PSF
|hu(x)|2 associated with the vector a. Then, we use Equation (4.36) to
compute β. The entire process can be done offline. When the training
samples are prepared, we train the shallow neural network until the
convergence criteria are met. The resulting neural network will then
be able to perform the mapping a→ β. Concerning the exact network
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architecture, Table 4.1 shows the network reported in [42].

input layer layer 1 layer 2 output layer
full conn. full conn. full conn.

34 34 100 100

Table 4.1: Network architecture of the P2S transform network.

The advantage of using a neural network for the Phase-to-Space
transform is that it can be parallelized. For a high-resolution image
with many pixels, the parallelism enables us to generate the β’s simul-
taneously across all pixels in the image in a single pass. Such a speed
up can be significant for large images.

4.5.5 Summary

At this point, we have described various aspects of Zernike-based simu-
lation, now we wish to put it all together. At a high level, Zernike-based
simulation follows the pipeline of generating Zernike space samples and
applying them to an image via the P2S transform (also utilizing (4.35)).
A depiction of Zernike-based simulation is presented in Figure 4.20. Let
us spend some effort in writing the recipe down to accompany this de-
piction which should also help to unify the topics we’ve discussed:

1. Zernike space sampling. Using the approximation of Chimitt
et al. [43], we can generate realizations of the Zernike space
quickly. To do so, we must have precomputed either of the cor-
relation kernels (4.25) or (4.26). It is possible to compute these
correlation kernels once and sample them as required – thus the
integration need only be performed computationally one time.
Thus, the correlation kernels shown are sampled from the pre-
computed integrals and used to generate the realization (through
FFT-based random signal generation) of the Zernike space au.

2. Image warping. With a random realization of the Zernike
space, we can first distort the input image via warping. To do
this, we take the tilt Zernike coefficients and send them to a warp-
ing module which distorts the image accordingly. It is important
to note that one must convert from the Zernike coefficient values
to pixels (which requires knowledge of the sample spacing).
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3. P2S transform. The P2S network then receives the higher or-
der Zernike coefficients and converts them to βu. This represents
the βms in (4.35) that we will multiply the warped image by.
Note that this step saves us a great deal of time – we don’t have
to take an FFT to form the PSFs and we avoid a direct imple-
mentation of spatially variant convolution, instead opting for an
approximation.

4. Spatially variant convolution. Finally, we wish to form the
output image by the usage of the approximation to spatially vari-
ant convolution. The warped image is multiplied by each “plane”
of coefficients βu and is convolved by its corresponding basis func-
tion φm which we refer to as the P2S kernels. From here, we can
sum and normalize them, forming the final output image.

We compare the results by Zernike-based simulation with split-step
simulation along with simulation times in Figure 4.21. Although the
results seem somewhat similar, the Zernike-based simulation finishes in
under 1 second whereas a full dense-field split-step simulation (i.e. one
complete split-step propagation per pixel) would take approximately
20 minutes.

Figure 4.20: An overview of Zernike-based simulation as described in
the series of papers [41, 42, 43].

To highlight the gain in speed offered by Zernike-based simulation,
this process can be done for a 4k image in 1 minute [43] with a basis
vector for every pixel. While this may seem slow to some (one minute
for a single image!) using split-step with 10 phase screens in the same
fashion for a 4k image (that is, using a propagation for every pixel in
the image) would take approximately 13 hours! We show a 4k image
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Figure 4.21: A comparison of [Top] Ground truth data [Middle]
Zernike-based simulation and [Bottom] Split-step simulation. Source:
[43].

Figure 4.22: A 4k image simulated using the Zernike-based approach
(here at a slightly lower resolution to save on PDF rendering time).
Source: [43].
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simulated in this fashion in Figure 4.22 (at a lower resolution here to
save on PDF rendering time).

To mirror the presentation of split-step, we also provide a pseudo-
code version of Zernike-based simulation as follows:

Algorithm 2 Zernike-based simulation

1: Determine the size of each Zernike field (equivalent to the size of
an image in pixels)

2: Generate M independent Zernike fields
3: Mix along index-dimension according to the Noll matrix
4: Apply warping transformation to input image Ig
5: Perform P2S transform
6: Multiple Ig by the various basis coefficient fields, producing βmIg

for m ∈ 1, . . . ,M .
7: Mix according to scattering convolution approximation

We note that the spatially varying convolution approximation step
may be utilized in split-step, however, the phase realization ϕu would
need to be decomposed by the Zernike polynomials, thus requiring an
additional step of inner products. However, there would still likely be
a gain in speed due to the vast advantage of Fourier-based convolution.
With the main recipe of this variety of simulation presented, we turn
to a few additional considerations we wish to highlight.

4.6 Additional Topics

To not distract us from the critical details, we have avoided a few
additional considerations. To close the loop on these, we present them
now to be applied in hindsight. These do not dramatically impact the
understanding of the model or simulation, however, they are important
considerations when doing simulation. We additionally present a real-
time application of this variety of simulation.

4.6.1 Wavelength

In principle, the spectral response of the turbulent medium is wave-
length dependent, and the distortion must be simulated for a dense set
of wavelengths. However, as we discussed in the beginning of Chapter 3,
the index of refraction can be decoupled into the static part n0(r, λ)
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and the varying part n1(r, t). The static part n0(r, λ) has some depen-
dencies on the wavelength but it does not contribute to the turbulence
distortion. It is mostly the refractive index in the ambient medium.
The varying part n1(r, t) changes with respect to the location r and
time t. For the typical visible spectrum (roughly 400nm to 700nm),
the influence due to the wavelength is insignificant compared to the
time and location. Therefore, it is sometimes justifiable to use one
wavelength for all three color channels (RGB) when constructing the
PSFs.

To illustrate the situation, Mao et al. [42] showed an example
(re-shown in Figure 4.23) of the individual PSFs for several wavelength
from 400nm (blue) to 700nm (red). By observing the figure, we notice
that the shape of the PSFs barely changes from one wavelength to
another. In the same figure, we simulate two color images. The first
image is simulated by using a single PSF (525nm) for the color channels
(and displayed as an RGB image). The second image is simulated by
considering 3 PSFs with wavelengths 450nm, 540nm, and 670nm. We
note that (c) is a more realistic simulation but requires 3× computation.
However, the similar PSFs across the color make the difference visually
indistinguishable, as seen in (d).

The small gap demonstrated in Figure 4.23 suggests that we can
simulate the RGB channels identically. In Mao et al. [42], the authors
acknowledge that this approximation does not hold in the worst-case
scenarios when the optical system demonstrates substantial chromatic
aberrations. This in itself is not a proof that regardless of the situation
one is simulating, one is justified to simulate one wavelength and apply
it to an image as if it were valid for all wavelengths. We do not intend
the previous discussion as a suggestion that this applies in all cases or
that it is even a proof for the particular case considered. It is always
important to consider whether or not this approximation is valid for
the situation one is modeling. We refer the reader to Hardie et al. [80]
for a detailed discussion of multi-spectral simulation, which addresses
this problem in the context of split-step simulation.

4.6.2 Elements of Realistic Simulation

With publicly available code for the simulator by Mao et al. [42],
it seems natural to download it, vary the parameters, and receive a
large amount of perfectly accurate training data. We emphasize that,
unfortunately, this is not the case.
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(a)

(b) (c) (d)

Figure 4.23: (a) PSFs across the visible spectrum. (b) The same distor-
tion applied to three channels using the center wavelength of the visible
spectrum. (c) Wavelength-dependent distortions applied to three chan-
nels. (d) Difference map between (b) and (d). Source: [42].

The careful application of an imaging simulation is not as sim-
ple as it may appear. Consider an image Ig passed to the simulator.
Firstly, it must be noted that no image, in reality, is truly equal to
Ig. A perfectly in-focus image, however, may serve as a suitable ap-
proximation. A more significant difficulty arises when we consider the
sampling of Ig, which is potentially unknown. Our image formation
equation depends on knowing the spatial parameters so that the PSF
may be properly applied.

To elaborate further, let us consider an image that is chosen out of
a dataset. Applying the simulator naively will almost certainly result in
a mismatch between the generated PSFs and the image. In other words,
our |hu|2 will be either too big or too small. How do we account for this?
We must know or assume the sampling of the image to be simulated as
it will impact the perceived strength of turbulence, correlation distance,
pixel shifting, and so on. It cannot be ignored.

As a closing note, we find it to be permissible to perform this
“naive” application of a simulator to a dataset if the parameters are
chosen somewhat reasonably. This will allow one to train a network
for some downstream task which, in our experience, can be used on
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real data reasonably well. However, to say that any image out of the
dataset is representative of turbulence for the chosen parameters is
simply wrong unless the user took the care of ensuring the sampling
measurements were correct, justifying any assumption of wavelength-
invariance, and so on. As a rule of thumb, naive application to a dataset
is acceptable if a downstream task stands to benefit from it; it is not
acceptable in the case of any analysis of the nature of turbulence.

4.6.3 Real-Time Turbulence Generation

We conclude the Chapter with a graphical user interface (GUI) for real-
time turbulence simulation. Figure 4.24 shows a GUI built by Purdue
University. In this GUI, we can feed the simulator with a camera source
such as a webcam. The resolution of the camera feed for this particular
GUI is limited to 512× 512. The simulation is run on a host machine
with an nVidia RTX 3080Ti GPU. The throughput of the simulator is
approximately 7 frames per second.

As we can see in the demonstration, the GUI will generate in real
time the turbulence-distorted image. Simultaneously, it displays the
real-time point spread functions as well as the real-time tilt map. The
subfigures on the bottom left are the real-time tilt statistics, including
the Z-tilt and the D-Tilt. Of course, they don’t match as they are
individual realizations, on expectation they do indeed match!

4.7 Summary

This Chapter has described a more computer vision and computational
imaging view of the simulation and modeling of the phase distortions
caused by atmospheric turbulence. The ideas discussed frame the im-
age formation process as a sampling problem, with the Zernike basis
coefficients forming a field from which the image is formed.

Part 1 Split-step alternatives: We began by introducing the prob-
lems which arise from split-step when we wish to use it for generating
training data. This led us to survey the existing alternatives to split-
step, ranging from ray tracing to GANs. This brought us to introduce
phase-based simulation to which the described Zernike-based simula-
tion modality belongs.

Part 2 The phase as a basis: The phase-over-aperture model
and Zernike representation introduce an alternative way of viewing the
process of modeling the turbulent image formation process. Specifically,
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Figure 4.24: The GUI for turbulence simulation developed by Purdue
University, with tunable knobs for turbulence parameters and real-time
turbulent realization graphics.

the distortions may be viewed as arising from a basis coefficients field,
which we refer to as the Zernike space {au}.

Part 3 The Zernike space: The concept of the Zernike space and
its application to simulation was introduced by the development of the
multi-aperture simulation. Utilizing classical results from astronomi-
cal telescope correlations, the multi-aperture simulation extends these
concepts to simulating spatially correlated ground-to-ground images.

Part 4 Zernike-based simulation: The P2S approach [42] com-
bines the theoretical insight of the multi-aperture simulation with a for-
ward transformation which is a neural network-based approach. This
allows for the multi-aperture simulation to be applied to a broader
class of problems, such as generating data for training machine learn-
ing restoration methods.
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In long-range imaging, one of the biggest challenges is to recover
distorted images. There are hardware and software solutions, but they
each have pros and cons. Hardware solutions are often faster, but they
are constrained by size, weight, and power. Software solutions are not
as customized although they have a larger degree of freedom. In this
Chapter, we will focus on the software (algorithm) solutions.

Developing image restoration algorithms for atmospheric turbu-
lence is not an easy task. For the most part, the challenges are associ-
ated with the uncertainty and complexity of the forward model which
is random. This is different from classical inverse problems such as
deconvolution where the blur is unknown but structured and deter-
ministic.

Notations

Discussing the inverse problems requires some changes in notations.
Since all inverse problems are solved on a computer, any continuous
function has to be discretized. On the object plane, the continuous
function J(x) is now represented by a N -dimensional vector

(object plane) J = [J(x1), J(x2), . . . , J(xN )]T ∈ RN ,

where x1, . . . ,xN are the N coordinates the digital image is defined
upon. Similarly, on the image plane, the function I(x) is now repre-
sented as

(image plane) I = [I(x1), I(x2), . . . , I(xN )]T ∈ RN .

The discretized PSFs hu(x) will be written as

(image plane) hu = [hu(x1), hu(x2), . . . , hu(xN )]
T ∈ RN ,
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where we note for simplicity in notation we will opt to use hu(xN ) and
hu for the PSFs in this Chapter.

The relationship between the clean image and the distorted image
is given by a nonlinear mapping Hθ : RN → RN :

I = Hθ(J), (5.1)

where θ denotes some underlying hyper-parameters. Putting this in
the context of atmospheric turbulence, Hθ is the wave propagation
equations and θ represents the turbulence parameters. Or, if we use the
Zernike space model, then θ would be the Zernike coefficients defined by
the atmospheric turbulence. In the simplest case where Hθ represents
an isoplanatic turbulence so that the blur is spatially invariant, the
equation can be simplified to I = h ⊛ J using a blur kernel h and
the convolution operator ⊛. If this happens, it resembles the classical
deconvolution problem.

In non-local image processing algorithms, we sometimes need to
process patches instead of the whole image. An image patch is a small
2D neighborhood around a certain pixel. Suppose we are looking at
coordinate xi, we define a p-dimensional patch as

(patch at pixel xi) I(xi) = [I(xi +∆x1), . . . , I(xi +∆xp)]
T ,

where ∆x1, . . . ,∆xp define a neighborhood of p pixels surrounding xi.
The neighborhood is typically square.

If we need to extend the definitions to videos instead of a single
image, we can associate the time axis to either the image or a patch.
Using the image as an illustration, we say that we are looking at a
frame located at time t as

(image at time t) I(t) = [I(x1, t), I(x2, t), . . . , I(xN , t)]
T .

To specify a patch located at pixel x and time t, we write I(x, t).

Inverse Problems

As we shall elaborate in detail later in this Chapter, the inverse problem
associated with atmospheric turbulence is often formulated as

Ĵ = argmin
J

∥I−Hθ(J)∥2 + λ g(J), (5.2)

where I is the observed distorted image, J is the latent clean image,
Hθ is the turbulence forward degradation model, and g(J) is a regu-
larization function constraining the search space of the solution. This
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least-squares fitting problem is not necessarily the only way to formu-
late the problem. In fact, many deep learning algorithms would directly
aim to recover J without even worrying about if we are using the least-
square function or which regularization function g to use. The purpose
of introducing Equation (5.2) is to help readers who are familiar with
the classical optimization-based inverse problems (such as total vari-
ation) to appreciate the connection. Even for readers coming from a
deep learning perspective, we often find Equation (5.2) useful in terms
of elaborating insights.

The difficulty of Equation (5.2) is when Hθ is complicated, e.g.,
Hθ is the turbulence model of which the instantaneous random real-
ization is not known. For this problem, we need to simultaneously
estimate Hθ while recovering J. This is a strongly ill-posed optimiza-
tion because the number of parameters needed to describe Hθ can be
even larger than the number of pixels in J. Thus, unless the structures
of the image content and turbulence statistics are properly utilized, re-
covering J from the above optimization can be extremely challenging
if not impossible.

Plan for this Chapter

Our goal in this Chapter is to highlight the key principles behind at-
mospheric turbulence restoration algorithms. We acknowledge the ex-
ponential growth of papers in the field over the past three years thanks
to the promising results of deep learning. However, given the sheer
volume of the algorithms, instead of listing every single method, we
believe it is more meaningful to focus on a few main concepts.

5.1 Understanding the Forward Model

Since the core difficulty in solving the inverse problem is the complexity
of the forward model, in this Chapter, we take a closer look at the
operator that defines the turbulence forward model. For simplicity of
the discussion, we shall focus on the spatial domain.

5.1.1 Turbulence Operator Hθ

The distortion caused by turbulence is spatially varying. Therefore,
any convolution that defines the blur needs to be spatially varying
too. Let’s start by considering the spatially varying convolution. If the
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ground truth clean image intensity (at an input pixel coordinate u) is
J(u) and the spatially varying point spread function (PSF) is defined
by hu(x) (where u specifies the source location), the observed image
intensity (at an output coordinate x), I(x), will be defined according
to

I(x) =

∫
hu(x− u)J(u) du (5.3)

where ⊛ denotes convolution.
Although the model in Equation (5.3) is spatially varying, it is

linear due to the linearity of convolution. This can be shown by noting
that if there are two clean images J1(x) and J2(x) (correspondingly
two distorted images I1(x) and I2(x)), then for any constants a and b,
it holds that

I(x) =

∫
hu(x− u)

(
aJ1(u) + bJ2(u)

)
du

= a

∫
hu(x− u)J1(u) du︸ ︷︷ ︸

I1(x)

+ b

∫
hu(x− u)J2(u) du︸ ︷︷ ︸

I2(x)

.

Therefore, we have shown the linearity of the operator.
In matrix and vector form, the convolution equation for each of

the coordinates x1, . . . ,xN can be expressed in terms of a linear com-
bination of the input pixels

I(xi) =

N∑
j=1

huj
(xi − uj)J(uj), i = 1, . . . , N, (5.4)

where huj
(xi) denotes the xith pixel of the point spread function from

pixel uj , and I(xi) and J(uj) are the pixel values of the observed and
the clean images, respectively. This leads us to write

I = Hθ(J), (5.5)

where the operator Hθ captures the convolutions imparted by the spa-
tially varying point spread functions hu1

, . . . , huN
. If we consider all
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the N pixels in Equation (5.4), Hθ takes on a familiar form:

I =


hu1(x1 − u1) hu2(x1 − u2) . . . huN

(x1 − uN )
hu1

(x2 − u1) hu2
(x2 − u2) . . . huN

(x2 − uN )
...

...
. . .

...
hu1

(xN − u1) hu2
(xN − u2) . . . huN

(xN − uN )


︸ ︷︷ ︸

Hθ

J. (5.6)

A pictorial illustration is shown in Figure 5.1.

Figure 5.1: The forward model of the atmospheric turbulence can be
written as a general operator Hθ that takes a clean image J and maps
it to a distorted image I.

As a special case, if the point spread function is spatially invari-
ant, we have huj

(xi − uj) = h(xi − uj). This will recover the familiar
spatially invariant convolution we see in the image deconvolution liter-
ature, i.e.,

I(xi) =

N∑
j=1

h(xi − uj)J(uj), i = 1, . . . , N. (5.7)

The resulting convolution matrix is then a circulant matrix that is
diagonalizable by the discrete Fourier transform matrix.

Inspecting the operatorHθ, we recognize that any inverse problem
has to involve some kind of inverse mapping H−1θ . However, directly
inverting Hθ can be difficult because Hθ consists of not only blurs but
also tilts. The question we want to address here is how to decouple the
blur and tilt as we model the turbulence.

5.1.2 Decoupling Tilt and Blur

There are two options we can consider when decoupling Hθ. The first
one is the blur-then-tilt model, where we first blur the image using
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spatially varying blurs and then add tilts to the blurred image:

I = Hθ(J) = [T ◦ B](J) = T (B(J)).

Here, “◦” denotes the function composition of two operators.
The second one is the tilt-then-blur model, where we first add

tilts to the image pixels and then blur the image using spatially varying
blurs:

I = Hθ(J) = [B ◦ T ](J) = B(T (J)).

The difference between the tilt operator T and the blur operator B is
the Zernike modes we use to construct the phase distortion:

• Tilt T : The phase is distorted by the first two Zernike coefficients
via

ϕu(ρ) =

3∑
m=2

au,mZm(ρ).

Recall that the first two Zernike modes (ignoring the DC term)
represent the horizontal and the vertical displacements, i.e., Z2(ρ) =
2ρx and Z3(ρ) = 2ρy where ρ = [ρx, ρy]

T is the coordinate. Thus,
if we define αu = [λau,2/R, λau,3/R]

T , then ϕu(ρ) can be written
as ϕu(ρ) = α

T
uρ.

• Blur B: The phase is distorted by all Zernike coefficients except
the first two:

ϕu(ρ) =

∞∑
m=4

au,mZm(ρ).

If we subtract the overall phase from the tilt, we can obtain the
following decomposition:

ϕu(ρ) =

3∑
m=2

au,mZm(ρ)︸ ︷︷ ︸
αT

uρ

+

∞∑
m=4

au,mZm(ρ)︸ ︷︷ ︸
φu(ρ)

In other words, the overall phase can be written as a linear term
plus a tilt-free phase term.

Once the phase distortions are defined, the resulting point spread
function is

hu(x) = |Fourier(e−jϕu(ρ))|2. (5.8)
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Since the Zernike coefficients used to define the phase distortion are
random, the blur and tilt operators B and T are both spatially varying
and random.

Inspecting the decomposition of the phase, we notice that the
exponential functions have their respective Fourier transform pairs

e−jϕu(ρ) = e−jα
T
uρ︸ ︷︷ ︸

←→ δ(u−αu)

· e−jφu(ρ)︸ ︷︷ ︸
←→ bx(u)

,

where δ(u − αu) is the delta function representing the tilt and bu(x)
is the blur. Since multiplication in the Fourier space corresponds to
convolution in the spatial domain, the resulting PSF is

hu(x) = δ(x−αu)⊛ bu(x) = bu(x−αu). (5.9)

Therefore, the PSF is a shifted version of the blur.
Now, let’s take a closer look at the tilt-then-blur and blur-then-

tilt operations. In terms of matrix-vector notation, the operator T can
be written as a shifting matrix T ∈ RN×N with

T =


tu1

(x1) tu2
(x1) . . . tuN

(x1)
tu1

(x2) tu2
(x2) . . . tuN

(x2)
...

...
. . .

...
tu1

(xN ) tu2
(xN ) . . . tuN

(xN )

 . (5.10)

The (i, j)th entry of T is tuj
(xi). If a pixel located at uj is relocated

to location xi, then tuj (xi) = 1. Otherwise tuj (xi) = 0. For example,
if T shifts the entire image by one pixel, then it is

T =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0

 . (5.11)

Remark: If the shifting operator needs to include subpixel shifts, we
can allow each row to be a local kernel (e.g. a Gaussian kernel) such
that the values sum to one.

The operator B is a collection of tilt-free but spatially varying
blurs. In the matrix notation, we can define a matrix B where [B]ij =
buj (xi) where buj is the tilt-free blur located at uj . As before, buj

is generated by the phase distortion at uj using high-order Zernike
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coefficients. The value buj (xi) is the tilt-free blur buj evaluated at
pixel xi. The overall structure of the matrix B is

B =


bu1

(x1) bu2
(x1) . . . buN

(x1)
bu1(x2) bu2(x2) . . . buN

(x2)
...

...
. . .

...
bu1(xN ) bu2(xN ) . . . buN

(xN )

 . (5.12)

The difference between buj
(xi) and huj

(xi) is the presence of the shift-
ing action by the tilt T. In fact, the source of tension is about whether
Hθ = T ◦ B (i.e. H = TB?) or Hθ = B ◦ T (i.e. H = BT?).

5.1.3 Tilt-then-Blur or Blur-then-Tilt?

To understand the difference between T ◦B and B◦T , we consider a grid
of point sources as shown in Figure 5.2. The tilt map is synthesized
using the first two Zernike coefficients with some spatial correlation
(aka the angle of arrival correlation). The blur in this example is a
spatially invariant Gaussian blur so that the visualization is clearer.

Figure 5.2: Comparing blur-then-tilt T ◦ B and tilt-then-blur B ◦ T .
Given a grid of point sources, a spatially invariant blur, and a dense tilt
map, the result of T ◦B (the green case) shows a grid of destroyed blurs
whereas the result of B ◦ T (the yellow case) shows a grid of shifted
blurs. We remark that T ◦ B is incorrect whereas B ◦ T is correct.

Ideally, if we apply Hθ to this grid of points, we should expect
that the output is a grid of shifted blurs. The reason is that if a single
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point source (a delta function) is convolved with a shifted blur (a point
spread function constructed using all Zernike coefficients), then the
output must be the tilt-free blur shifted to the new location specified
by the tilt.

Inspecting the case of tilt-then-blur B ◦ T , we see a perfect match
with the full operator Hθ. This can be understood as first starting
with an unshifted delta function. When we apply the tilt to the delta
function, the delta function is moved to a new position specified by the
amount of the tilt. The result of this tilting operation to the grid of
points is then a grid of shifted delta functions. If we apply a blur, then
the blur will change the deltas to blurs. This is exactly the same as the
original operator Hθ.

Mathematically, we can show that the original operator Hθ is a
set of shifted blurs. For example, if we assume that the tilt is globally
shifting all the tilt-free blurs {bxi

(u) | i = 1, . . . , N} by one pixel, then
each row of H will be a shifted blur with a one-pixel shift. The ith
blur is still located at the ith row, but the entries of the row are huj

=
[bxi(u2), bxi(u3), . . . , bxi(uN ), 0]. Putting all the entries together, we
can show that H is the matrix:

H =


bu2(x1) . . . buN

(x1) 0
bu2

(x2) . . . buN
(x2) 0

...
...

. . .
...

bu2
(xN ) . . . buN

(xN ) 0

 . (5.13)

With a simple calculation, we can show that this matrix is identical to
BT:

BT =


bu1(x1) bu2(x1) . . . buN

(x1)
bu1

(x2) bu2
(x2) . . . buN

(x2)
...

...
. . .

...
bu1

(xN ) bu2
(xN ) . . . buN

(xN )



0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



=


bu2

(x1) . . . buN
(x1) 0

bu2(x2) . . . buN
(x2) 0

...
...

. . .
...

bu2(xN ) . . . buN
(xN ) 0

 = H. (5.14)

Therefore, in this example, we have shown that H = BT.
If we use the blur-then-tilt model T ◦ B, the result in Figure 5.2

shows that the blurs are not shifted but destroyed. The reason is that
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if we first blur the grid of points, the result is a grid of blurs. When
we apply the tilt map to the grid of blurs, each tilt vector will move
its corresponding pixel value to a different location. In other words,
since the tilt map is dense, every pixel has a tilt vector. These include
pixels that are not the delta functions; we refer to the tilt vectors at
these locations as the non-centered tilts. In the full model Hθ and
the blur-after-tilt B ◦ T model, these off-centered tilts are not used
because the tilt vectors are only valid for the centered tilts. In the
blur-then-tilt model T ◦B, the grid of blurred points will have non-zero
values at those non-centered tilts. As a result, the non-centered tilts
will move the blurred pixel values to a different location. From the
image formation perspective, this is a grid of destroyed point spread
functions.

In terms of matrices and vectors, we can show that

TB =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0



bu1

(x1) bu2
(x1) . . . buN

(x1)
bu1

(x2) bu2
(x2) . . . buN

(x2)
...

...
. . .

...
bu1

(xN ) bu2
(xN ) . . . buN

(xN )



=


bu1

(x2) bu2
(x2) . . . buN

(x2)
...

...
. . .

...
bu1

(xN ) bu2
(xN ) . . . buN

(xN )
0 0 0 0

 ̸= H. (5.15)

To summarize, we conclude the difference between blur-then-tilt
and tilt-then-blur in the following theorem.

Theorem 5.1 (Decomposition of Tilt and Blur). If we decom-
pose the turbulence operator Hθ as the product of the tilt T and
the blur B, then

Hθ = B ◦ T and Hθ ̸= T ◦ B. (5.16)

5.1.4 Geometric Analysis

The above intuition can be formalized by a simple analysis. We consider
a simplified situation where the turbulence is the combination of a dense
field of tilts and a spatially invariant blur. We want to show that under
this simplified condition, the two operators T ◦B and B◦T are different.
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Blur-then-tilt T ◦ B
Let’s start by considering the spatially invariant blur. We define a
template function g(x). For example, we can think of this template
function as a Gaussian blur kernel. For simplicity, we assume that this
Gaussian blur kernel is spatially invariant. This spatially invariant blur
will give us the blur buj (x) centered at pixel uj as a shifted version of
the template function:

buj
(x) = g(x− uj). (5.17)

When this tilt-free blur is applied to the clean image J(x), we obtain
the tilt-free blurred image

IB(xi) =

N∑
j=1

buj (xi)J(uj) =

N∑
j=1

g(xi − uj)J(uj). (5.18)

For the blur-then-tilt model T ◦ B, the tilt ti assigns IB(xi) to a new
pixel location xi + ti of the final image IT ◦B. That is,

IT ◦B(xi + ti) = IB(xi).

Letting vi = xi + ti, this becomes IT ◦B(vi) = IB(vi − ti). Since vi is
a dummy variable, we can replace vi with xi. Thus,

IT ◦B(xi) =

N∑
j=1

g(xi − ti − uj)J(uj). (5.19)

Tilt-then-blur B ◦ T
The tilt-then-blur model behaves differently. We first tilt the image by
defining

IT (uj + tj) = J(uj). (5.20)

Letting vj = uj + tj , it follows that IT (vj) = J(vj − tj). Now, if we
blur this shifted image, we will have

IB◦T (xi) =

N∑
j=1

bvj (xi)IT (vj) =

N∑
j=1

g(xi − vj)J(vj − tj).

Replacing uj = vj − tj , it follow that

IB◦T (xi) =

N∑
j=1

g(xi − tj − uj)J(uj). (5.21)
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The Roles of ti and tj

Comparing Equation (5.19) and Equation (5.21), the difference between
the two equations is that for T ◦ B, the tilt is ti whereas for B ◦ T the
tilt is tj . In the case of T ◦ B, the tilt ti is applied to the output.
That is, we blur the image (drawn as a circle in Figure 5.3) and move
the output by ti. Since each output pixel experiences a different ti, the
blur is destroyed. For B◦T , although the situation is more complicated
because there are N tilts {tj | j = 1 . . . , N}, they perturb the location
of the input. Therefore, while each xi sees N tilts, the N tilts are
common for every xi. The shape of the blur is thus preserved.

Figure 5.3: T ◦ B moves the center to a new location, whereas B ◦ T
moves the points of the blur to different locations.

5.1.5 Impact to Real Images

Although the two operators T ◦B and B ◦T are theoretically different,
their impacts on real images are less so. This is particularly true when
the underlying image is a natural image.

To see why this is the case, rewrite Equation (5.19) and Equa-
tion (5.21) as

IT ◦B(xi) =
N∑
j=1

g(xi − uj)J(uj − ti),

IB◦T (xi) =

N∑
j=1

g(xi − uj)J(uj − tj).
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Then, by approximating J(uj−ti) and J(uj−tj) to the first order, the
pointwise difference between IT ◦B(xi) and IB◦T (xi) can be evaluated
as

IT ◦B(xi)− IB◦T (xi)

=

N∑
j=1

g(xi − uj)
[
J(uj − ti)− J(uj − tj)

]

≈
N∑
j=1

g(xi − uj)︸ ︷︷ ︸
convolution

∇J(uj)
T︸ ︷︷ ︸

image gradient

(ti − tj)︸ ︷︷ ︸
random tilt︸ ︷︷ ︸

distorted image gradient

. (5.22)

An intuitive argument here is that ti−tj is the difference between
two tilt vectors. Since each tilt is a zero-mean Gaussian random vector,
the difference remains a zero-mean Gaussian random vector. Although
they are not white Gaussian, they are nevertheless noise. If there is a
large ensemble average of these noise vectors, the result will be close to
zero.

So, where does the average come from? There is a convolution
by g(x − u). If the support of this blur kernel is large, then many of
the noise vectors will be added and this will result in a small value.
However, for an image with a large field of view, the relative size of the
blur kernel g is usually not big (at most 30×30 for a 256×256 image).
So, there must be another source that makes the error small.

The main reason why natural images tend to show a less difference
between T ◦B and B ◦T is that the image gradient ∇J(uj) is typically
sparse. For most parts, the gradient is zero except for edges. (Textures
are less of a problem because they will be smoothed by the blur.) When
∇J(uj) is multiplied with the noise vector ti− tj , the result is an edge
map with noise multiplied by every pixel. Convolving ∇J(uj)

T (ti−tj)
with a blur kernel g will further smooth out the variations. Figure 5.4
shows a typical example with some standard optical configurations.
The difference is not noticeable.

5.1.6 From Forward Model to Inverse Problems

So far we have shown that if we agree upon the phase decomposition
in terms of the Zernike representation, then the correct turbulence for-
ward model is tilt-then-blur. As a result, we need to be careful about
statements such as
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(a) T ◦ B (b) B ◦ T

Figure 5.4: Simulated turbulence using T ◦ B and B ◦ T . We notice
that although theoretically the two are different, visually the two are
nearly indistinguishable.

“... The image formation of atmospheric turbulence follows the
equation I = T (B(J)) ... ”

It is more appropriate to instead state that the image formation model
is I = B(T (J)) and comment that for natural images it can be approx-
imated by I = T (B(J)).

From the standpoint of solving inverse problems, the issue be-
comes more interesting. The inverse problem, expressed in terms of
the maximum-a-posteriori estimation, is [110, 111, 83, 112, 113]

Ĵ = argmin
J

∥I−Hθ(J)∥2 + λ g(J), (5.23)

where g(J) is the regularization function, also known as the image prior,
that confines the search space of the solution J.

The optimization in Equation (5.23) should look familiar to read-
ers who know deconvolution. In the special case where Hθ is a spa-
tially invariant blur, Equation (5.23) resembles the classical decon-
volution problem. Therefore, any classical/modern solution that has
been invented to solve deconvolution can become a candidate for Equa-
tion (5.23). For turbulence image restoration, approaches following this
line of thoughts are abundant, e.g., [114, 115, 116, 117, 110, 118, 119,
120].

In the presence of turbulence, solving Equation (5.23) is more
involved because we do not know Hθ which is the instantaneous turbu-
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lence operator. It is a random realization drawn from a certain proba-
bility distribution. Since we only have one observation of the distorted
image I, recovering Hθ can be as hard as recovering J.

There are two options that are worth discussing. Firstly, we can
assume that instead of only one observation, we have T observations of
a static scene. In this case, the optimization objective can be written
as a sum of individual turbulence terms:

Ĵ = argmin
J

T∑
t=1

∥I(t)−H(t)
θ (J)∥2 + λ g(J), (5.24)

where H(t)
θ is the random realization of the turbulence distortion at

time t. Solving the new equation is slightly easier because if we knew

H(t)
θ , then we will have more degrees of freedom. However, if we do not

know H(t)
θ , the new problem is as difficult as the original problem.

The other option is to decouple H into T and B as follows.

Ĵ = argmin
J

∥I− B(T (J))∥2 + λ g(J). (5.25)

This optimization can further be written as

Û = argmin
U

∥I− B(U)∥2 + λ g(U), (5.26)

Ĵ = argmin
J

∥Û− T (J)∥2 + λ g(J). (5.27)

This is a two-step approach. After we have recovered the intermediate
variable Û, we can recover Ĵ. The difficulty of this approach is that
when solving for U, we need to estimate the spatially varying blur B.
This task is as difficult as the original problem because we need to
recover the blur kernel at every pixel.

Today’s turbulence mitigation algorithms are mostly inspired by
the lucky imaging concept which will be discussed in the next subsec-
tion. The core idea is to flip the order of the blur and the tilt so that
the optimization is

Ĵ = argmin
J

∥I− T (B(J))∥2 + λ g(J). (5.28)

As discussed earlier, tilt-then-blur and blur-then-tilt are different. How-
ever, for natural images (i.e., not point sources), the visual difference
may not be too obvious. The benefit of flipping the order of tilt and
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blur is that estimating the tilt from a stack of images is feasible. More-
over, after the lucky imaging step, a significant portion of the spatially
varying blur will be removed because we will be fusing sharp regions
of the images. As a result, T can be inverted to a reasonable degree of
accuracy, and B will become easier because the spatially varying part
of the blur will be suppressed. In the following Chapter, we will discuss
these two steps one by one.

Tilt-Blur T ◦ B or Blur-Tilt B ◦ T ?

• The correct model is B ◦T . So, for simulation, we must use
B ◦ T .

• For solving inverse problems, it does not matter. It does
not mean that we shouldn’t use T ◦ B; it’s just that there
are other considerations. For example, inverting the blur is
often much harder than inverting the tilt.

5.2 Lucky Imaging

After discussing the forward imaging model, we now discuss methods
to solve the inverse problem. Chapter 5.2 is dedicated to the concept of
lucky imaging. The goal of lucky imaging is to handle the tilt operator
T and remove some of the spatially varying blur B in Equation (5.28).

5.2.1 Lucky Probability via Zernike

Atmospheric turbulence is a random process caused by random phase
distortion. If we model the phase using the Zernike representation, the
randomness is encoded by the Zernike coefficients which are sampled
from a probability distribution. Among many properties, the proba-
bility distribution is a high dimensional zero-mean Gaussian according
to Tatarskii [22]. Thus, if we observe a Zernike coefficient over a long
period of time, the ensemble average will be zero. What this means
is that, from time to time, and/or across the spatial locations, we will
see instants where the Zernike coefficients are approximately zero. The
probability of getting a zero Zernike vector is not high, but in theory,
it is possible. When this happens, we say that there is a lucky event.
The resulting image is called a lucky image [27].
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To gain more intuition of the lucky image, we can conduct an
experiment by putting a heat source in the optical path close to the
camera. Since the heat is localized, the turbulence is isoplanatic, i.e.,
the entire field of view will experience the same turbulence. If we use a
high-speed shutter to capture the frames, we will see that occasionally
the image is sharp. Figure 5.5 shows an example, where we see that an
unlucky frame suffers from severe distortions whereas a lucky frame is
distortion free.

In a truly long-range situation, the turbulent effects become aniso-
planatic. Across different regions of the image, we can still observe the
lucky effect but it appears locally. Some regions of the image will ex-
perience a lucky effect while another region of the same image may
not. In this case, we say that there is a local lucky effect, and the
corresponding lucky region is known as a lucky patch.

Figure 5.5: An lucky event can be observed by placing a local heat
source near the camera. This will create isoplanatic turbulence where
the image is globally distorted. Over a period of observations, we will
see distorted and distortion-free frames. A key for this experiment is
to ensure that the exposure is short enough that motion blur is not
accumulated.

The lucky event can be described mathematically by considering
the PSFs. Figure 5.6 shows a grid of PSFs resulting from passing point
sources through a turbulence simulator. For this grid of PSFs, some
PSFs are nearly a delta function, e.g., hu(x) ≈ δ(x− u).1 If a PSF is
a delta function, the convolution with an image will be distortion free.
Such a phenomenon can happen in space across a large field of view.
It can also happen in time over a long period of observation. If we use
short exposures to capture a large number of frames over time, then

1Technically speaking, the PSF will never become a delta function because the
finite aperture of the camera will at best give us a diffraction-limited blur. So,
instead of having a pure delta function, we will obtain a diffraction-limited PSF.
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occasionally we will see a delta function for the PSF.

Figure 5.6: A grid of point sources after going through turbulence
simulation. From time to time, and from location to location, the PSF
can be close to a delta function. We say that when this happens, there
is a lucky event.

We can define the lucky event via the Zernike coefficients.

Definition 5.1 (Lucky event). Let au = [au,m |m = 2, . . . ,M ]
be the Zernike coefficients for a pixel coordinate u, a lucky event
happens when

lucky event at pixel u =
{
∥au∥22 ≤ τ

}
, (5.29)

where τ is some user-defined threshold.

In plain words, a lucky event happens when the magnitude of
the Zernike coefficients is small enough. The magnitude of the Zernike
coefficients measures the amount of turbulence energy. If the scene
is turbulence-free, then the phase distortion is ϕu(ρ) = 0, which is
equivalent to requiring all Zernike coefficients to be zero, i.e., ∥au∥2 = 0.
As turbulence becomes stronger, ∥au∥2 will grow.

The analysis of the lucky probability was first documented by
David Fried in his 1978 paper [27]. Fried’s approach is similar to what
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we described above where he uses tilt-corrected phase functions. How-
ever, instead of using the Zernike functions as the basis, Fried con-
sidered the Karhunen–Loeve (KL) expansion. The reason is that the
Zernike basis functions, although they are orthogonal, don’t produce
statistically independent coefficients. Therefore, if we consider a pair of
coefficients au,i and au,j , the joint expectation cannot be factorized as
E[au,iau,j ] ̸= E[au,i]E[au,j ], and hence we cannot ensure E[au,iau,j ] = 0
even if we know E[au,i] = 0 for any i. This will cause difficulties when
considering the norm E[∥au∥22]. The KL representation alleviates the
difficulty because the basis functions are computed via the principal
component analysis and so they are statistically independent.2

The definition of the lucky event by using the KL representation is
the same as that using the Zernike representation. Let β = [β1, . . . , βM ]
be the KL expansion coefficients, the lucky event can be defined as

lucky event at pixel u =
{
∥βu∥22 ≤ τ

}
, (5.30)

for some user-defined parameters τ . With the KL expansion, Fried
showed the probability of obtaining a lucky event.

Theorem 5.2 (Probability of a Lucky Event). Let βu be the
Karhunen–Loeve expansion coefficients of the phase function at
pixel u. The probability of obtaining a lucky event is

P
[
∥βu∥22 ≤ 1

]
︸ ︷︷ ︸

probability of a lucky event

≈ 5.6e−0.1557(D/r0)
2

, (5.31)

for D/r0 ≥ 3.5, where D is the aperture diameter and r0 is the
Fried parameter.

The prediction by Fried is useful in some ways but also limited
in other ways. On the positive side, it does tell us the probability of
obtaining a lucky event. The equation is interpretable because it is
written in terms of D/r0. For stronger turbulence, D/r0 increases and
so Fried’s formula predicts that the probability will drop.

The downside of the prediction can be seen in several ways. First,
D/r0 ≥ 3.5 is quite big for many ground-to-ground imaging systems.

2The caveat is that the Karhunen–Loeve (KL) expansion is not as physically
interpretable as the Zernike coefficients. Mathematically, the KL decomposition is
in a non-closed form determined by the phase function’s covariance equation.
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Typically, for ground-to-ground imaging (especially if we consider a
passive imaging system that is incoherent), any D/r0 ≥ 3.5 is consid-
ered difficult for image restoration algorithms. For astronomical imag-
ing, we might be able to handle a larger D/r0 because we have access
to more advanced tools such as adaptive optics.

Another reason why Fried’s result has limited applicability for
computer vision is that the lucky event Fried considered is within the
isoplanatic angle. Isoplanatism means that the entire frame is distorted
homogeneously by the same turbulent effect. For astronomical imaging,
isoplanatic turbulence happens because the field of view is small. For
ground-to-ground applications, especially those associated with com-
puter vision tasks, the turbulence is anisoplanatic, implying that the
distortions are spatially varying. Therefore, instead of seeing a lucky
frame, we can only see lucky patches. To compute the probability of
getting an algorithmically fused lucky frame, we need to compute the
correlation across different patches. This remains an open problem, to
our knowledge.

5.2.2 Optical Lucky Imaging

Lucky imaging can be achieved optically and digitally. The technique
on the optical side is known as adaptive optics. This technique is
mostly used for astronomical imaging because the star does not move
(as in the sense of a car moving in the scene). Figure 5.7 shows a
schematic diagram of an adaptive optics system [121, 38, 122].

An adaptive optics system requires a reference star in addition
to the target star [124]. Usually, astronomers will look for a bright
star near to the target star. Since we know the distance of the ref-
erence star, waves originating from the source can be measured and
tracked. In adaptive optics, we use a wavefront sensor to record the
incident wavefront, hence determining the instantaneous phase of the
wave. If atmospheric turbulence is present, the measured phase will
deviate from the theoretical prediction. A feedback signal measuring
such a deviation will be sent to the control system which is connected
to a set of adaptive mirrors. The adaptive mirrors rotate their angles
in order to correct the phase lead and lag measured by the wavefront
sensor. Once the phase lead and lag are compensated by the adaptive
mirror, the optics will be used to capture the target. Since the optics
have already been configured to compensate for the turbulence, the
target star can be captured without any part of the phase distortions.
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Figure 5.7: An adaptive optics system implements the concept of lucky
imaging using optical instrumentation. With the help of deformable
mirrors, the adaptive optics system measures the phase of the ref-
erence star and compensates for the phase distortion by moving the
deformable mirrors [123]. In terms of turbulence correction, the ran-
dom tilts are removed but the residue blur remains. Therefore, some
deblurring algorithms are still needed to produce the result. Source:
https://lyot.org/background/adaptive_optics.html.

The mirrors of the adaptive optics system have limited precision
of the phase it can correct. In most of cases, the adaptive optics system
can correct for the first-order phase deviation. Using our terminologies,
this is exactly the first two Zernike coefficients representing the tilt.
Mathematically, what adaptive optics seeks to find is the best linear fit
so that we can decompose the phase as [23, 24]

ϕu(ρ) = αTρ︸︷︷︸
linear term: tilt

+ φu(ρ)︸ ︷︷ ︸
high order aberrations

. (5.32)

In this equation, the vector α = [α1, α2] represents the normal vector
of the best fitted linear plane. An intuitive way of thinking about α
is to treat them as the first two Zernike coefficients (which are the
tilts). The adaptive optics system can compensate for this term, thus
leaving us just the high order aberration term φu(ρ). However, α is
not exactly the Zernike coefficients because the Zernike basis functions
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are not statistically independent. Some high-order aberration terms
can also have the tilting effect. Therefore, by performing the adaptive
optics, we can sometimes compensate for more than just the first two
Zernike coefficients.

The other limitation of the adaptive optics system is that its spa-
tial resolution is limited by the number of deformable mirrors that can
be installed and controlled. We should remind ourselves that the de-
formable mirror is adjusted mechanically. While advanced MEMS can
be used to reduce the power and space, precise control of the angles of
the mirrors is still challenging. The speed of the deformable mirrors
is also an issue. We are not able to adjust the mirrors too quickly
for moving scenes. Finally, adaptive optics often require a reference
star. For many ground-to-ground imaging applications, this may not
be available.

5.2.3 Digital Lucky Imaging: Sharpness Metric

Digital lucky imaging is based on capturing a stack of short-exposure
images and then processing them using algorithms. The overall idea is
to identify the distortion-free frames by finding which frames have the
sharpest image content [125]. These frames will then be aggregated to
construct a lucky image [126].

The idea of identifying the sharpest frame can be realized in mul-
tiple ways. In this Chapter, we mention a few of them:

Intensity Variance. In turbulence literature, the Strehl ratio is
often used as a metric to predict the quality of a frame if a reference
star is available. The Strehl ratio is the ratio between the peak of
the intensity in the aberrated PSF and that of a diffraction-limited
PSF. In [83], it was mentioned that the Strehl ratio has a relationship
to the variance of the pixel intensity in a local neighborhood. More
specifically, for a fixed coordinate x, we consider a local neighborhood
Ωu and compute the variance as

µx =
1

|Ωu|
∑
s∈Ωu

I(s),

Vx =
1

|Ωu|
∑
s∈Ωu

(
I(s)− µx

)2
.

If we plot the variance as a function of time, we can obtain a plot
similar to Figure 5.8. A lucky frame is then identified if the variance is
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an outlier of the plot. There are different ways to determine if a pixel
is an outlier. We refer readers to [83] for a hypothesis testing approach.

Figure 5.8: One way to identify sharp frames from a stack of turbulence
images is to compute the local intensity and evaluate its variance. [Left]
An image. [Middle] The variance of the patch as a function of time.
[Right] Histogram of the variance. The idea here is to identify the
outliers from the histogram. Image courtesy: [83].

Gradient. Another commonly used algorithmic strategy to iden-
tify a sharp image is by means of checking the gradient. The idea was
reported in Joshi and Cohen [127] and later refined in [128]. To com-
pute the gradient of a region, we calculate the horizontal and vertical
finite differences:

gx = I⊛ [1,−1],
gy = I⊛ [1;−1].

In this pair of equations, the filters [1,−1] and [1;−1] are the first-
order horizontal and vertical difference operators, respectively. When
we convolve (i.e., the ⊛ operation) the input image I with these filters,
we effectively extract the edges of the image and store them as gx and
gy, respectively. A compact notation for this operation is the gradient
operator ∇ : RN → RN×2:

[gx, gy] = ∇I.

The sharpness of the image can be computed via the norm of the
gradient. For example, we can consider the isotropic total variation
norm

∥I∥TV2
=

√√√√ N∑
n=1

([gx]2n + [gy]2n),
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where [·]n denotes the n-th element of the vector. Another approach is
to consider the anisotropic total variation norm, defined as

∥I∥TV1 =

N∑
n=1

|[gx]n|+ |[gy]n|.

If we want to compute the local gradient, we can replace the image
I by a patch I(x) located at coordinate x. If we further want to include
the time axis, we can consider the patch located at x at time t, i.e.,
I(x, t). Then, a sharpness metric δS can be defined as

δS(x, t) = ∥I(x, t)∥TV1
. (5.33)

Notice that the choice of the anisotropic or the isotropic total variation
is not very important, because the two behave similarly.

Variations of the gradient are abundant. For example, instead
of considering the horizontal or vertical gradient, we can consider the
Laplacian of a local patch. In the age of deep learning, we can train a
network to extract features; and from the features, we can identify the
sharp patches.

5.2.4 Digital Lucky Imaging: Fusion Step

Suppose that we have a stack of T frames. How should we construct
the lucky image? Shall we just use one of the sharpness metrics and
pick the sharpest? The answer is no, because the so-called “sharpest”
frame may not even be a good frame. For example, if for some reason
an object in a frame is over-exposed, then there will be a surge in
the gradient around the object boundary and background noise. If we
simply just pick according to the gradient, then this poorly exposed
frame will be picked. So in digital lucky imaging, we almost never pick
the sharpest frame but a set of similarly sharp frames.

The way to accomplish the frame selection can be a hard decision
(i.e., by setting a threshold) or a soft decision (which will be discussed
shortly). The benefit of the hard decision is that we are more aggressive
in terms of completely ignoring frames that are below the threshold, so
their influence on the lucky image is eliminated. The downside, how-
ever, is that the quality of the lucky image will depend heavily on the
threshold. Since there are no universal rules for choosing the threshold
(besides a few statistical hypothesis techniques), it is sometimes better
to consider the soft decision approach.
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In a soft decision approach, we fuse multiple images to construct
one lucky image. Using the sharpness metric as an example, we can
consider a weight:

wx,t(∆t) = exp {α∥I(x, t+∆t)∥TV1} . (5.34)

This definition involves two parts. The first part is the exponential
function. We take the exponential function to scale the total variation
norm. If a patch is sharp, ∥I(x, t + ∆t)∥TV1 will be large and so the
exponential function further amplifies the magnitude. The second part
is the coordinate offset ∆t. This offset is a running index that defines
the weight, which is the weight for a reference pixel located at (x, t),
and the weight is computed with respect to the temporal neighbors of
(x, t). In other words, we are computing the weight along the time axis
and finding out which frame contains the sharpest content.

Given the weight, we can now fuse the lucky patch, at location
(x, t), as

Ilucky(x, t) =

∑
∆t∈ΩT

wx,t(∆t)I(x, t+∆t)∑
∆t∈ΩT

wx,t(∆t)
. (5.35)

This equation is reminiscent of the classical non-local means [129] where
we construct weights to form a linear combination of pixels (or patches).
The slight difference here is that we are forming the linear combination
purely along the temporal axis because we are looking for a lucky patch
in time.

In [128], it was commented that if we only do the above sharpness-
based non-local averaging, we still have not overcome the limitation of
the sharpness metric that it cannot differentiate a reliable sharp patch
versus a poor-quality but a sharp patch. As such, it was proposed to
include a geometric consistency metric:

δG(x, t) = ∥I(x, t)− Iref(x, t)∥2. (5.36)

Here, Iref is the reference patch constructed from the stack of frames.
The reference patch is typically the temporal average of all the frames
if the scene is static. As it is called, the reference patch is turbulence-
jittering free so that it can serve the purpose of being a reference.
Physically, this temporal average can also be considered a long-exposure
image.

The meaning of the geometric consistency term is that we want
to tell whether the current patch I(x, t) is a faithful sample in the
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stack of frames. If it is a good sample, then geometrically it should
not deviate too much from the reference. The norm measuring the
deviation between the two terms is therefore capturing the consistency.

When geometric consistency is added, the weight will become

wx,t(∆t) = exp
{
−α1∥I(x, t+∆t)− Iref(x, t+∆t)∥2

}︸ ︷︷ ︸
geometric consistency weight

× exp {α2∥I(x, t+∆t)∥TV1
}︸ ︷︷ ︸

sharpness weight

. (5.37)

We can now replace the weighted sum using this new weight. Note that
in this definition, the exponential function has a negative exponent with
respect to the geometric consistency. So, if there is a large deviation
between the current and the reference, the weight will be small so that
we can skip the geometrically inconsistent patch.

Figure 5.9 is a pictorial illustration of the impact of the geometric
consistency term and the sharpness term. This figure is adapted from
[128].

Aligned 

Frames

Local Patches

Lucky Frame

Figure 5.9: Lucky imaging patch selection requires the patch to be geo-
metrically consistent with the reference so that it is no longer distorted
by the pixel jittering of the turbulence. The geometrical consistency
score is measured by δG. The other metric which is the sharpness met-
ric is used to ensure that the selected patch is sufficiently sharp so that
it is less affected by the atmospheric blur. Source: [128].
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From Lucky Patches to Lucky Image. When we apply any
of the above lucky fusion methods, the result is a patch instead of
an image. To fuse an image, we can stitch multiple patches together.
If there are overlaps among the patches, we take the average of the
overlapped regions. The approach is similar to how BM3D performs
its aggregation step. Readers interested in this can consult [130].

Connecting to Inverse Problems. Once the lucky image is
formed, the inverse problem becomes

Ĵ = argmin
J

∥Ilucky − h⊛ J∥2 + λ g(J). (5.38)

In this equation, h represents the residual blur remaining in the lucky
image Ilucky. We will come back to this point in the next subsection.
But at the high level, we have converted Equation (5.28) into a much
simpler optimization problem where we only need to focus on the de-
convolution task. Once the deconvolution is completed, the overall
restoration problem is solved.

Fourier Burst Accumulation. The method we presented here
broadly belongs to the family of block matching. There are alternative
approaches in the literature such as Fourier burst accumulation [131,
132]. Fourier burst accumulation operates in the frequency domain. If
the input images are distorted by turbulence, the blur associated with
the turbulence will make the Fourier spectrum of the image narrower
(due to the lowpass effects). Thus, given an image stack, we look at
the Fourier spectra of the individual frames. For each frequency in
the spectrum, we assign a weight so that the processed spectrum is a
weighted average of the input spectra. The weights are designed such
that the widest spectrum (i.e., those suffering the least due to blur)
will be given a higher weight. If the object does not move, a weighted
average of the Fourier spectrum may be suitable to remove the blur.

Figure 5.10: Fourier burst photography constructs the weights by eval-
uating high-frequency components. Source: [131].

181



CHAPTER 5. IMAGE RESTORATION

5.3 Image Registration

In this Chapter, we discuss another important element in turbulence
mitigation: pixel registration. There are two objectives of pixel regis-
tration. Firstly, we need to compensate for the jittering effects caused
by the turbulence. These effects are typically small but random. Sec-
ondly, if the scene contains moving objects, then the registration algo-
rithm needs to compensate for the motion.

5.3.1 Registration for Non-Rigid Deformation

Consider a reference frame Iref(x, t) and a frame of interest I(x, t).
The problem of image registration is to find the displacement vector
∆x such that after reversing the motion, we can minimize any error
between the prediction and the reference:

∆̂x = argmin
∆x

(
Iref(x, t)− I(x+∆x, t)

)2
, (5.39)

where the ℓ2 norm is just one of the many possible distance functions
we can choose.

If we assume that the motion is simple and small, we can use the
first-order approximation to write

I(x+∆x, t) = I(x, t) +∇xI(x, t)
T∆x,

where ∇x denotes the spatial gradient of the image. Assuming that
our goal is to set Iref(x, t) ≈ I(x+∆x, t), we will reach the equation

∇xI(x, t)
T∆x = Iref(x, t)− I(x, t). (5.40)

The equation is sometimes called the optical flow equation. Since it is a
system of linear equations, we can solve it using standard linear algebra
methods. One of those is the Lucas-Kanade algorithm. Because of
the sheer volume of literature on this subject, we shall not repeat the
implementation in this book. Generally speaking, optical flow today
is very mature. There are plenty of Python / MATLAB packages one
can use, including OpenCV [133, 134, 135, 136].

For atmospheric turbulence, since the turbulent effect is signif-
icantly less structured than object motion, running optical flow on a
per-pixel basis is deemed impossible in the early days. Thus, during the
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late 00s when optimization algorithms were beginning to become pop-
ular, various motion models were proposed to improve the regularity of
the problem. Among these models, the non-rigid image registration
was the most widely adopted model for its robustness and simplicity.

The main argument behind the non-rigid image registration meth-
ods is that in a natural image, not all pixels need to be compensated
for. For example, if we have a flat region, there is no need to run any
optical flow for pixels there even if we know the turbulence distortion
is not static. Since there are a limited number of interest points in the
image, the image registration algorithm can mainly focus on them. In
addition, turbulence is correlated – if one pixel is shifting to the right,
then its adjacent pixel should also shift to the right. This allows us
to use the concept of control points and spline interpolation to iden-
tify the locations of these carefully chosen control points, as shown in
Figure 5.11.

(a) Source: [113] (b) Source: [83]

Figure 5.11: Non-rigid motion estimation is commonly used to handle
the turbulence image registration problem.

Non-rigid image registration has the advantage that it reduces
the number of variables to a small set of control points. This makes
the estimation significantly easier. The downside, however, is that the
method is largely agnostic to turbulence physics. In fact, turbulence
never follows a spline model. Even if some correlations can be approxi-
mated by a spline, the hyper-parameters defining the spline model need
to be determined too. As algorithms evolve, we see that in the early
2020s, people have gone back to optical flow for a more precise estima-
tion of the motion. The efforts are spent on improving the reference
images and using deep neural networks to pull better features.
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5.3.2 Reference Frame

For any image registration algorithm to work, we must have a reference
frame so that the current frame has a reference point when mapping
the pixels. For example, if we want to align the (t + 1)-th frame with
respect to the t-th frame, we would call the t-th frame a reference
frame. In turbulence, the difficulty is that all frames in the image stack
are distorted. Thus, aligning the (t + 1)-th distorted frame to the t-
th distorted frame does not do anything useful. As such, we need a
method to first recover a reasonable reference frame.

There are multiple ways to construct a reference frame. We high-
light a few methods here:

Temporal Average. The simplest solution is to construct a
temporal average, as done in [137, 83, 138, 139]. The idea is to compute

Iref(x) =
1

T

T∑
t=1

I(x, t), (5.41)

where T is the number of frames we have in the stack. If the scene
is static, the temporal average will give us the long-exposure image
[59]. A long-exposure image is tilt-free because according to Tatarskii
the tilts follow a zero-mean Gaussian process [22]. However, as we
presented in the turbulence physics Chapter, the long-exposure image
is very blurry. Furthermore, if the scene contains a moving object, it
is possible that the moving object will be washed out.

Robust PCA. Another approach that can construct a reference
frame is the robust principal component analysis (RPCA) technique,
where we refer readers to [111] for more detailed discussions. The idea
is to consider the observed video I = [I(t1), . . . , I(tT )] ∈ RN×T that
consists of T frames with each frame containing N pixels. RPCA solves
the optimization problem

minimize
L,S

∥L∥∗ + λ∥S∥0

subject to I = L+ S. (5.42)

In this minimization problem, the norm ∥·∥∗ is the nuclear norm which
is the sum of the eigenvalues of the matrix. The norm ∥ · ∥0 is the
sparsity norm that measures the number of non-zeros in the matrix.
The minimization problem says that the video I can be decomposed
into a low rank part L and a sparse part S. Using our language, we
can treat the low rank part as something that does not move, i.e.,
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the reference frame(s). The moving part is encoded by S because we
assume that the movement is mostly sparse.

RPCA is computationally heavy even though the minimization
problem is convex. We need to resort to the most advanced convex
optimization solvers to solve the rank minimization. Generally speak-
ing, although many papers have been published for RPCA (beyond the
context of turbulence), the actual usage in practice is not common.
Besides the computational issues, the solution provided by RPCA is
also not guaranteed to be good because minimizing the nuclear norm
does not mean that we can extract a good reference image. If the scene
contains a moving object, it is likely that RPCA will wash out it too.

Non-local Averaging. One of the more robust approaches is
to perform a space-time nonlocal average instead of a simple temporal
average [128]. The idea is to construct a reference patch Iref(x, t) via a
linear combination of nearby patches:

Iref(x, t) =

∑
∆t∈ΩT

wx,t(∆t)I(x, t+∆t)∑
∆t∈ΩT

wx,t(∆t)
. (5.43)

In this equation, wx,t(∆t) is a weight that will be defined shortly. The
weight is a function of the time stamps ∆t in a temporal neighborhood
ΩT = {∆t1, . . . ,∆tT }. Thus, over the time axis, we construct the
weighted average using patches I(x, t+∆t) that are determined to be
similar to I(x, t).

Why do we ignore the spatial neighborhood? Isn’t I(x, t) also a
distorted patch? Both can be answered by looking at how the weight
wx,t(∆t) is defined. We consider a standard ℓ2 distance between the
patch I(x, t) and I(x+∆x, t+∆t):

δx,t(∆x,∆t) = ∥I(x, t)− I(x+∆x, t+∆t)∥2. (5.44)

This is nothing but a pairwise comparison between the current patch
I(x, t) and everyone in the space-time neighborhood. Among these
pairwise distances, we search along the spatial axis and pick the smallest
distance, for every ∆t:

δ̃x,t(∆t) = min
∆x∈Ωx

δx,t(∆x,∆t), (5.45)

where Ωx = {∆x1, . . . ,∆xK} is the spatial neighborhood. Intuitively,
what this equation does is look at each adjacent frame. If there is one
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patch in the adjacent frame that is similar to I(x, t), we will consider
it a useful candidate for the weighted average. This can be an effective
way of differentiating between two situations: (i) If there is object
motion, then δx,t(∆x,∆t) will be large for every ∆t because we cannot
find a similar patch within a spatial neighborhood as the object moves
to another location. So, we can effectively preserve the moving patches
by assigning a smaller weight so that the weighted average has less
temporal effect. (ii) If there is turbulence, then the patches will jitter
but not move away. Thus, for every ∆t, it is likely that δx,t(∆x,∆t) will
be small for some ∆x. If we pick those patches, group them together,
and take an average, the turbulence effect will be mitigated. Therefore,
δ̃x,t(∆t) has a unique capability of handling both the object motion and
the turbulence.

The weight is defined by taking the exponential function of the
distance:

wx,t(∆t) = exp{−βδ̃x,t(∆t)}, (5.46)

where β is a hyper-parameter that can be tuned to adjust the decay
rate of the weight. Typically, β is a function of the turbulence strength.
If D/r0 is large, β will be small so that we can use more patches to form
the weighted average. In contrast, if D/r0 is small so that turbulence
is weak, β can be large so that we only use the least jittered patches
for constructing the weighted average.

(a) Raw input (b) Temp. Avg (c) Non-local

Figure 5.12: Evaluating the reference frame method using real dynamic
data. (a) Raw input. (b) Temporal averaging. Observe that the man
is blurred over 100 frames. (c) Non-local averaging. Observe that the
man remains in the image while the background is stabilized. Source:
[128].

A comparison of the reference frame generation method can be
seen in Figure 5.12, where we show the results of the temporal aver-
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aging method and the non-local method. The scene contains a static
background with a moving foreground. As we can see, the tempo-
ral averaging washes out the moving foreground whereas the non-local
method can preserve it.

5.3.3 Other Image Registration Methods

As far as pre-deep-learning methods are concerned, scenes containing
both turbulence and moving objects are very difficult to align. People
have considered approaches that extract the region of interest using
segmentation methods [140, 141, 139, 142]. The problems with this
approach are: (1) the object boundaries are often blurred due to mo-
tion. So unless we perform some kind of alpha matting algorithm to
extract the transparency level, there is really no good methods to han-
dle the boundaries. Needless to say, alpha matting itself is extremely
complex and only works for a certain class of studio-level images. (2)
After segmenting the object, most turbulence algorithms will proceed
to mitigate the turbulence in the background, e.g., [143]. While recov-
ering the background is mathematically more well-posed, it often has
little to no practical value because the object of interest is typically in
the foreground. As a result, segmentation-based methods are seldom
used.

In the turbulence literature, a practically useful approach is the
block matching concept [144, 145]. The idea is similar to the non-local
averaging approach we presented above. Instead of performing a soft
decision as in the weighted averaging, we select patches according to
some kind of similarity scores and perform frequency domain filtering.
The complexity of the method is comparable to the non-local averaging.
With graphics processing units (GPUs), these operations can be done
in parallel and may be computed reasonably quickly.

5.4 Image Deconvolution

Turbulence mitigation algorithms in the pre-deep-learning era are often
implemented in a sequential manner where we first align the images
and perform lucky fusion. Then from the lucky image, we perform
another step of image deconvolution to remove the residue blur. This
type of step-by-step inversion is both a reflection of the physics and a
realization of the need for regularizing any optimization problem. In
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Figure 5.13 we show a figure taken from [146] that is “representative”
of the typical procedures a turbulence mitigation algorithm takes.

Figure 5.13: Image restoration based on lucky imaging often requires
image registration, lucky frame construction, and deblurring. Source:
[146].

5.4.1 Tilt-then-Blur in Inverse Problems

As we examine this pipeline, we recognize that the order of mitigating
turbulence is often:

Ĵ = Deblur(Lucky(I)) ≈ B−1T −1(I),

where we recall the tilt T and B blur operator. The interesting ob-
servation here is that while the true forward model is B(T (·)), i.e.,
tilt-then-blur, the inversion does not follow the order of deblurring-
then-detilting. Instead, the inversion is detilting-deblurring.

The discrepancy between the forward model and the inverse method
needs to be justified from a practical point of view. While deblurring
should be performed first, it is also much harder to perform first. Since
the blur in turbulence is spatially varying, deblurring means that we
need to estimate all PSFs, one per pixel, in order to recover the image.
Without further elaborating on the deblurring algorithms, this PSF es-
timation alone is enough to convince us that it is nearly an impossible
task. Moreover, we need to make sure that the deblurred image (which
is often low-passed) still contains the meaningful tilt (which is high-
frequency content) for the de-tilting algorithm to work. So, although
we want to deblur before de-tilt, practically it is impossible.

Tilt removal (including image registration and lucky fusion) has an
immense advantage in that after these two steps, the blur in the lucky
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image is more or less spatially invariant. The reason is that during
the lucky selection process, we only pick the sharpest patches from
the image stack to construct the lucky image. Since we are selecting
patches over many frames, we are effectively eliminating bad PSFs and
aiming for a delta-function PSF. If all the patches are sharp, then
all the corresponding PSFs will be more or less a delta function. So,
we have converted the spatially varying blur problem to an invariant
blur problem. The merit of the computational efficiency improvement
clearly outweighs the mismatch with the forward model. Therefore,
although the forward model is tilt-then-blur, the inverse algorithm is
often de-tilting and then deblurring.

5.4.2 Why Image Deconvolution?

As the final step of the turbulence mitigation pipeline, image deconvo-
lution aims to boost the image resolution by removing any residue blur
in the image. But where does the residue blur come from?

Figure 5.14 is an excerpt from Zhu and Milanfar [83]. In this
figure, the authors commented that after the lucky fusion step, the im-
ages are not completely sharp because the optical system is limited by
diffraction. Therefore, even in the absence of turbulence, the acquired
image will still experience some amount of blur due to the Airy disc
of a finite aperture. An image deconvolution is thus needed to remove
the diffraction-limited blur.

Figure 5.14: A visualization of the deconvolution process after regis-
tration. Source: [83].

Readers at this point may ask: if the blur is purely caused by the
optical system, then it should be fixed. It seems a fairly straightforward
problem to measure the point spread function (PSF) of the optical
system and perform a standard deconvolution step using any off-the-
shelf algorithm such as Lucy-Richardson. The problem, however, is
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that although the lucky image is constructed from the sharpest patches
from the image stack, there is no guarantee that the sharpest patches
are blur-free. Since the digital lucky imaging step is not perfect, there
is always some residual blur. These residual blurs are induced by the
algorithm and are data-dependent, we cannot say let’s measure the PSF
and perform Lucy-Richardson. A critical component here is to estimate
the blur. This is why our deconvolution must be a blind deconvolution.

5.4.3 Alternating Minimization

In what follows, we discuss a framework for handling the blur in turbu-
lence mitigation. We emphasize that this framework is not the only way
of removing the blur. It is based on the classical alternating minimiza-
tion, which is relatively easy to understand the intuition behind. We
shall focus on spatially invariant blur, as we explained at the beginning
of this deblurring Chapter.

Simultaneously estimating the image and the blur kernel is known
as blind deconvolution [147, 148]. In digital image restoration, the
associated inverse problem is often written in terms of matrices and
vectors. Denoting Ilucky ∈ RN as the input blurry image (i.e., the
whole lucky fused image instead of a lucky patch), h ∈ RK as the blur
kernel, J ∈ RN as the latent clean image, the optimization for the blind
deconvolution is

(Ĵ, ĥ) = argmin
J,h

∥Ilucky − h⊛ J∥2 + λg(J) + γr(h). (5.47)

In this equation, the operator ⊛ denotes the spatially invariant convolu-
tion. The two functions g(J) and r(h) are the regularization functions
that constrain the solution space of the optimization. The two scalars
λ and γ are used to control the relative emphasis between the forward
model and the regularizations.

Since simultaneously optimizing for J and h is a non-convex prob-
lem, the standard approach to solve the problem is to consider an al-
ternating minimization strategy by fixing one variable and minimizing
over the other variable [149, 150, 151, 152]:

Jk+1 = argmin
J

∥Ilucky − hk ⊛ J∥2 + λg(J),

hk+1 = argmin
h

∥Ilucky − h⊛ Jk+1∥2 + γr(h).
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In this pair of equations, the superscript k = 1, 2, . . . denotes the itera-
tion number. As the algorithm makes progress, we expect the estimate
of the blur kernel and the image to improve.

The success/failure of the alternating minimization is largely driven
by the choice of the regularization functions g(J) and r(h). The regu-
larization function g(J) encapsulates the image prior which is usually
learned through data. One relatively mature procedure to solve the
J-subproblem is the plug-and-play ADMM (PnP) algorithm [153, 154,
155, 156]. The idea is to split the J-subproblem into two steps where
one step inverts the forward imaging model using the current blur ker-
nel hk and the other step uses a pre-trained deep neural network image
denoiser to handle the noise. The neural network denoiser provides an
implicit modeling of the image prior g(J). We skip the details of the
PnP algorithm and refer the readers to monographs such as [157, 158].

For the other regularization r(h), since we are working on turbulence-
related blur, we should leverage this piece of information. Generic blur
models such as those for motion blur or out-of-focus blur are less rel-
evant although they are popular in the literature. The approach we
present here is derived from the phase-to-space (P2S) transform. In
some sense, we are re-using the outcomes of the P2S framework for the
deblurring purpose.

5.4.4 Modeling the Blur

Recall that when we train the P2S transform, we have constructed
a dataset of PSFs. We denote these PSFs as h1, . . . ,hM , where M
is a large number presenting the number of example PSFs we have
simulated. The PSFs are tilt-free, meaning that they are generated
from the turbulence simulator with the tilts removed. The PSFs are
sent to a principal component analysis (PCA) to extract the principal
components. Denote these principal components as φ1, . . . ,φL, which
are constructed from

{φℓ}Lℓ=1 = PCA(h1, . . . ,hM ), (5.48)

where PCA stands for the principal component analysis.
Assuming that the principal components are determined, the PSFs

can then be represented via

h =

L∑
ℓ=1

wℓφℓ. (5.49)
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for some representation coefficients {wℓ | ℓ = 1, . . . , L}. Substituting
this into the alternating minimization, we obtain a different optimiza-
tion from an optimization in h

hk+1 = argmin
h

∥Ilucky − h⊛ Jk+1∥2 + γr(h),

to an optimization in w = {wℓ | ℓ = 1, . . . , L}:

wk+1 = argmin
w

∥∥∥∥∥Ilucky −
(

L∑
ℓ=1

wℓφℓ

)
⊛ Jk+1

∥∥∥∥∥
2

+ γr(w) (5.50)

hk+1 =

L∑
ℓ=1

wk+1
ℓ φℓ.

The difference between the first and the second equation is the change
of optimization variable from h to w. In the first equation, we directly
estimate the blur kernel h without any constraint. In the second equa-
tion, we use a parametric model to confine the search space of the blur
kernel. All our kernels are generated from the linear combination of
the basis functions φℓ. As long as we can specify the basis coefficients
wℓ, we can construct the blur kernel. Here we have written the PSF as
spatially invariant (an approximation that may be justified by the use
of lucky fusion beforehand), though works such as Novak et al. [159]
have performed similar decomposition and a spatially varying deconvo-
lution or spatially varying pixel-shift estimation as in the case of water
distortions [160].

The advantage of the optimization of w over the optimization of h
is that the regularization function r(h) is difficult to formulate whereas
r(w) can be statistically determined. In particular, by analyzing the
distribution of the coefficients for a large number of example PSFs, it
was found that a reasonable choice of the regularization function is

r(w) =

L∑
ℓ=1

|wℓ|
σℓ

, (5.51)

where σℓ is a learnable parameter, in this case the standard deviation
of wℓ learned from data. This r(w) is a mixture of weighted ℓ1 regular-
ization. With combined with a standard ℓ2 loss in Equation (5.50), the
problem can be solved with convex solvers such as CVX or the ADMM
algorithm.
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Empirically, we can plot the distribution of the actual coefficients
(by numerically calculating them from the raw PSFs). This will tell us
how good Equation (5.51) is and how to estimate the parameters σℓ. As
shown in Figure 5.15, we observe a Laplacian type of distribution for the
weights wℓ using a fixed PCA basis. The parameters σℓ are estimated
from this plot to maximize the fit of Equation (5.51) to the data. This
also explains why if we naively assume that r(w) = ∥w∥1, we will not
be able to capture the weights σℓ as demonstrated in Figure 5.15.
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Figure 5.15: Statistical distribution of the basis coefficients wℓ. Except
for the first few bases, the other basis coefficients demonstrate an expo-
nentially decaying distribution. We can empirically fit this distribution
with a parametric distribution. It was found that this is the exponen-
tial of the weighted sum of absolute values. Source: [128].

In Figure 5.16 we compared a few state-of-the-art turbulence mit-
igation methods (in the pre-deep learning era). The methods we study
include an optimization-based approach by Lou et al. [110], a classi-
cal lucky-imaging-based approach by Zhu and Milanfar [83], a complex
wavelet fusion technique CLEAR by Anantrasirichai et al [137], and
an improved lucky imaging technique using all the concepts mentioned
above [128]. As we can see in these examples, the overall deblurring re-
sult of [128] is convincingly better than the competitors. Especially for
small objects such as those line patterns in the image, the deblurring
algorithm performs well.
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(a) Input (b) Avg. (c) SG (d) NDL (e) CLEAR (f) Mao

[110] [83] [137] [128]

Figure 5.16: Overall comparisons using real long-range static sequences.
The first sequence was obtained from Youtube. The rest were captured
by Panasonic Full HD Camcorder HC-V180K (aperture diameter 24mm
and focal length 103mm), at a distance of 4km and temperature of
30◦C.

5.4.5 Beyond Deconvolution

Turbulence mitigation does not always stop at image deconvolution.
As early as Shimizu’s work [113], it was already mentioned that one
can try to super-resolve the image. In a nutshell, we can assume that
in addition to the blur and tilt problem, there is also a downsampling
operation happening to the image. Thus, when solving the inverse
problem, we can attempt to solve

Ĵ = argmin
J

∥I−DHθ(J)∥2 + λg(J), (5.52)

where D is a down-sampling operator, basically the identity matrix
with alternating rows skipped. Our experience working on super-resolution
is that deblurring is already hard enough. To further recover the lost
high-frequency content of the image, adding a down-sampling opera-
tor is not going to help. In fact, the down-sampling operator makes
the inverse problem even more ill-posed. If not regularized properly, it
would be very difficult to solve the minimization. But if we regularize
too much, then there is a danger of hallucinating the content instead
of recovering it.
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5.5 Deep Learning Methods

Significant progresses in image restoration algorithms to mitigate atmo-
spheric turbulence are made since the early 2020s. One of the biggest
contributing factors is the promise of the deep learning methods demon-
strated in a large plethora of restoration tasks such as image/video de-
noising/deblurring. We will not dive into the development of generic
image restoration tasks because it simply evolves too rapidly. Instead,
the goal of Chapter 5.5 is to highlight a few relevant concepts in the
context of atmospheric turbulence.

5.5.1 The Importance of Data

Deep learning methods, as the name suggests, are a collection of al-
gorithmic (software) solutions that use deep neural networks to learn
how to restore an image from data. The three key components of a
deep learning method are

(i) Model: Whether we have a carefully designed neural network to
achieve the restoration goals.

(ii) Computing resources: Whether we have a powerful computer
with a graphics processing unit (GPU) computer accomplish the
training.

(iii) Data: Whether we have enough data to train the model.

Among the three factors, the data is the most important one for a
few reasons. Firstly, since the deep neural network is trained based on
the data, feeding the model with a poorly designed dataset will lead to
poor performance of the network. For example, when handling atmo-
spheric turbulence, if the training dataset contains only one scenario
captured on a specific day in a specific place (also at just one tempera-
ture and one optical path), then no matter how good the architecture
is, it will only learn how to handle that particular imaging condition.
When it is presented with a different imaging condition, the network
will fail. Secondly, network architectures today are more or less based
on similar concepts, e.g., convolutional layers, attention layers, multi-
scale, etc. While some configurations are better fit for atmospheric
turbulence, their differences are not game changers if the dataset is
poorly chosen.

While datasets are important, collecting one is unfortunately ex-
tremely challenging. Unlike standard problems such as image deblur-
ring where we can easily synthesize the blur or shake the camera to

195



CHAPTER 5. IMAGE RESTORATION

collect the blurred image, in atmospheric turbulence we cannot easily
“turn off” the turbulence as in the case of camera motion. We can
capture the turbulence-distorted image on a hot day, but we will not
be able to collect the ground truth on the same day. Some readers may
think that if the target pattern is known a priori, we can use that as
the ground truth. However, since the spectral response of the object to
the camera changes from site to site (and day to day), the real ground
truth is never known.

Datasets Today (Overview): As of today, data collection for
atmospheric turbulence is mainly divided into two categories:

• Characterizing the turbulence, typically done by the defense/-
physics community, and

• Evaluating algorithms, typically done by the image processing
community.

Dataset Publication Approach videos range Public?
NATO [90], 2007 Real n/a ×
OTIS [161], 2016 Real 16 ✓
CLEAR [137], 2012 Hot air 3 1km ✓

Synthetic 8 – ✓
AFRL [162], 2019 Real n/a 2.5km ×
Nature [163], 2021 Synthetic ✓
Mao [128], 2020 Real 5 4km ✓
Army [164], 2021 Real, face ×
UG2 [165] [166], 2022 Real, text 500 1km ✓
TMT [167], 2022 Synthetic ✓

Table 5.1: A partial list of atmospheric turbulence datasets reported
in the literature. Most of these datasets are developed for testing/eval-
uating algorithms. Their volumes are usually very small compared to
training data used to train deep neural networks.

The focus and scale of the datasets vary significantly as one can see
from Table 5.1. For most military efforts, the data usually comes with
C2

n measurements via a scintillometer. This can be useful for high-
energy physics and optical communication through the atmosphere
where we need to carefully characterize the received laser beam. How-
ever, because of the sensitivity of the data (and the nature of the
acquisition process), the data is often classified. As such, for image
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processing algorithm developments, the community often collects their
own datasets with a larger field of view and a wider range of image
content.

Testing Datasets: Small academic research labs typically do not
have access to high-end equipment. One workaround solution reported
in the literature is to build a hot-air chamber [165]. This idea is similar
to the heat tunnel reported in [162] but on a much smaller scale. As
shown in Figure 5.17, the heat chamber consists of multiple heat lamps
located along the optical path. At the end of the optical path, a monitor
is used to display the target pattern, and at the other end of the optical
path, a camera with a long-range lens is used to capture the scene. By
turning on and off the heat chambers, we can collect the turbulence and
the ground truths, respectively. Some limitations of the heat chamber
should be mentioned. For example, the heat lamps introduce a strong
infrared signal that can alter the spectral profile of the scene. The
color is thus distorted. Also, unless the total optical path is sufficiently
long, there is no guarantee that one can accurately replicate the true
long-range effect. The heat is localized and so the turbulence could be
isoplanatic.

Figure 5.17: A heat chamber is a good optical instrument to record a
controllable level of turbulence. Shown here is a setup developed by
Mao et al. [165] at Purdue University. It is a small scale, low-cost, and
easier version of [162].

For long-range data acquisition, the question one should ask is the
purpose of the dataset. If the dataset is used to evaluate restoration
algorithms, then the data must have some level of differentiating power
to rank the methods. Generic images such as flowers and trees can
be difficult because, in the absence of ground truth, typical metrics
such as the peak signal-to-noise ratio (PSNR) cannot be used, with
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some analysis of metrics offered by Groff et al. [168]. An alternative
solution here is to consider a joint restoration-recognition task where
the restored images will be fed to a downstream object recognition
algorithm to report the detected classes. For example, we can ask
whether the restoration algorithm has successfully recovered the face
of a subject by checking the predicted identity. Figure 5.18 shows an
example of text recognition. Texts are useful here because it directly
tests whether the restoration can recover the desired resolution. We
can prepare a list of texts of different fonts, and see to what scale the
restoration can perform.

Figure 5.18: Real text data collected by an off-the-shelf camera with an
optical zoom. Shown on the left are example distorted images, whereas
the subfigures on the right are the actual camera setup.

One ongoing debate in adopting deep learning-based algorithms
is how much class specificity we can assume. For example, in CVPR
2022’s UG2+ challenge, winning teams exploited the fact that the eval-
uation metric is based on optical character recognition. As such, the
teams trained the neural networks using text data. While this is a legit-
imate approach for solving the specific task, it fails to demonstrate the
other side of the developed neural networks which is to handle unseen
situations. One can argue that class-specific training is valid because
the users shall know the type of content and so the best model should
be picked. Or, it is possible to pre-train a few models and use one
model during inference. The opposite side would then argue that in
many military missions, storing a suite of class-specific models can be
difficult resource-wise.

Training Dataset: As far as training data is concerned, syn-
thetic data is likely the path to move forward because this is the only
way we can generate thousands to millions of examples images to train
a deep neural network. As of today, a consistent finding in the litera-
ture is that a better turbulence simulator tends to give a better image
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restoration result, assuming that the network architecture is fixed. Ta-
ble 5.2 shows a comparison between two turbulence simulators [41] and
[169]. [41] is based on the phase-to-space transform and has a guaran-
tee of the turbulence statistics. [169] assumes a non-rigid deformation
with less consideration of turbulence physics. Table 5.2 indicates that
when [41] is used to prepare a training dataset which is then used to
train a U-Net, the performance is substantially better than that using
[169].

D/r0 [128] [41]+U-Net [169]+U-Net
1.5 27.33dB 27.18dB 26.59dB
3.0 27.04dB 26.98dB 26.11dB
4.5 25.85dB 26.01dB 25.40dB

Table 5.2: PSNR values of the reconstruction results, averaged over 30
testing sequences.

At the time of writing this book, the largest training dataset is the
TMT dataset generated by Zhang et al. [167], summarized in Table 5.3.
The TMT dataset consists of static and dynamic parts. TMT uses the
place dataset [170] for synthesizing static scenes. It randomly selects
9,017 images in the original dataset as input for the simulator. TMT
generates 50 turbulence images and their associated distortion-free im-
ages for every single input, resulting in 9,017 pairs of image sequences
of static scenes. TMT splits them into 7,499 pairs and 1,518 pairs for
training and testing, respectively.

Table 5.3: Specification of the TMT dataset, where each sequence for
the static scene data has 50 frames.

Static Dynamic
Source Place [170] Sports [171] and TSRWGAN

[172]
Amount 9,017 sequences 4,684 videos (1,979,564 frames)
Training 7,499 sequences 3,500 videos
Testing 1,518 sequences 1,184 videos

For dynamic scenes, the TMT dataset contains many videos. The
source datasets for our dynamic scene data are the Sports Video in
the Wild (SVW) dataset [171] and all ground truth videos used in
TSRWGAN [172]. These videos are mixed, generating 4,684 samples
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with a total number of frames of 1,979,564. TMT generates 4,684 pairs
of full turbulence and distortion-free videos, then randomly split them
into 3,500 videos for training and 1,184 for testing, keeping at most 120
frames per testing video.

The significance of the data can be seen from the comparison
shown in Figure 5.19 where we compare the TMT dataset and the
TSRWGAN dataset. The simulation tool that TSRWGAN [172] used
is [173], which generates physically valid tilts and spatially invariant
blur kernels, but higher-order aberrations are not simulated. [172]
also produces synthetic data by artificial heat sources to create tur-
bulence effects in a short distance. However, this approach tends to
generate highly correlated degradation with a weak blur. We observed
that their released model does not generalize well on CLEAR’s real-
world dataset [137], OTIS [161] and the text dataset [166] where the
turbulence effect is stronger than that in the synthetic data used by
TSRWGAN. Fine-tuning the TSRWGAN model with the TMT’s data
shows a significant improvement of the TSRWGAN model on those
out-of-distribution datasets in Fig. 5.19.

5.5.2 Network Designs

The designs of deep neural networks for mitigating atmospheric turbu-
lence can vary significantly from one to the other. In this subsection, we
mention a few of the approaches documented in the recent literature.

In the simplest way, we can use an existing network architecture
such as a UNet but trained with the synthetic turbulence data, e.g., the
BRDNet shown in Figure 5.20. A comprehensive report of the compar-
isons of several commonly used neural network architectures has been
documented by Vint et al [146]. In that report, the authors compared
BRDNet [174], RDN [175], CAE-Unet [176], SuperSR [177], DnCNN
[154], RCAN [178]. The conclusion of the report was profoundly inter-
esting, that none of these networks are able to produce a substantial
improvement in image quality. For several of the testing scenarios,
the peak signal-to-noise ratio (PSNR) of the restored image is just
marginally better than the raw distorted image. Worse are some cases
where the restored image introduces a large number of artifacts that
make the image unrecognizable. We should mention that the networks
are all trained using synthetic turbulence data containing one million
images. However, to fit into the memory constraints, most network
sizes are significantly reduced. Whether the shrinkage of the network
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(a) Input (b) Trained with TSR-
WGAN’s data

(c) Trained with TMT’s
data

(d) Input (e) Trained with TSRW-
GAN’s data

(f) Trained with TMT’s data

Figure 5.19: Comparing the significance of data.

capacity has an impact to the restoration is unknown.
A natural improvement of the network architecture is to use the

network as one module of the overall restoration pipeline, for exam-
ple, in Figure 5.21. Here, the network is used to replace a traditional
image deblurring step which is usually a transform-domain method or
an optimization method. Replacing a traditional module with a neural
network ensures interpretability because all the other steps are based
on classical approaches. It also allows users to debug if anything goes
wrong.

The design shown in Figure 5.21 has several limitations. If we
only use the deep neural network in the last stage of the pipeline,
its functionality is only deblurring. The bigger challenge of aligning
frames, picking the lucky patches, and handling the moving objects are
all done by traditional methods. The rigidity of the framework does
not fully leverage the power of deep learning that can be trained end-
to-end. As we see in many of our experiments, end-to-end training is
particularly important because it ensures that the intermediate features
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Figure 5.20: Network architecture of BRDNet. This network is one
of the older networks that use dilated convolutions and batch normal-
ization. The performance of the network is not great for turbulence
mitigation tasks as reported in [146]. Source: [174].

Figure 5.21: Neural networks can be used as a module of the overall
turbulence mitigation pipeline. In this work, the idea is to use DnCNN
as a deblurring module after performing standard operations such as
lucky imaging, registration, and fusion. The performance of such a
design is limited by the first half of the pipeline which is a collection of
classical techniques. Source: [179].

are relevant to the final output.
If a simple re-use of an existing architecture and a simple plug-in

to a classical framework both don’t work, then a natural next step is to
consider a fully end-to-end network that takes some turbulence physics
into consideration. Figure 5.22 shows a complex UNet proposed by
Anantrasirichai et al. [180]. The idea is to use an encoder to extract the
features of the distorted images, and to use a decoder to reconstruct the
clean image from the codewords. In between the encoder-decoder, there
is a pyramid residual module to pull and aggregate features at different
scales (and in the residue domain.) A complex-valued network is used
to handle the random jittering of turbulence. This makes the network
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Figure 5.22: Complex valued convolutional neural network proposed by
Anantrasirichai [180]. In this network, the idea is to use an encoder-
decoder to extract the features and reconstruct the image. Residual
connections and pyramid structures are introduced to improve the
restoration. Source: [180].

Figure 5.23: Image reconstructions produced by [180]. Source: [180].

reasonably similar to the classical methods such as CLEAR [137] which
also performs complex-value computations across different scales. In
terms of performance, results shown Figure 5.23 appear to have fewer
artifacts than some other networks such as UNet and FFDNet.
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5.5.3 Learning Uncertainty

Moving away from a purely black box or a simple plug-in framework,
there is an increasing effort to explicitly model the turbulence forward
model during the restoration task. As we mentioned before, a turbu-
lence inverse problem can generally be framed as (after flipping the
order of tilt and blur for computational efficiency although we know
that the correct order is tilt-then-blur):

Ĵ = argmin
J

∥I− T (B(J))∥2 + λ g(J), (5.53)

where B denotes the blur operator, and T denotes the tilt operator. The
observed noisy image is denoted as I, and the optimization variable J is
the latent recovered image. The regularization function g(J) is more of
a placeholder to emphasize that we put regularizations over the latent
image J.

Figure 5.24: Learning the uncertainty map alleviates the difficulty of
learning the precise turbulence forward model. In this design, the net-
work separately learns the uncertainty maps of the tilt and the blur.
Then, the uncertainty maps are concatenated to the noisy input and
processed by the restoration network. Source: [164].

Recovering J would be a lot easier if we know B and T . However,
since atmospheric turbulence is random, knowing B and T requires
us to know the instantaneous realizations of B and T , which is not
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feasible in practice. The workaround solution here is to estimate the
uncertainty map instead of the actual turbulence distortion. Proposed
by Yasarla et al. [164], the idea is to first generate an indicator map
of the tilt and an indicator map of the blur, as shown in Figure 5.24.
These indicators are not the true T and B, nor even an approximation
of them. Instead, we should think of them as confidence maps that are
concatenated with the input (distorted) image to serve as an additional
feature. Here, by confidence, we mean that if a pixel has a high value,
then it is likely distorted by tilt (or blur). So the confidence maps
tell us where and how strong the respective distortions are. After the
estimation of the confidence maps, another network is used to perform
the actual restoration.

The advantage of estimating the uncertainty map is that it by-
passes the difficulty of recovering the actual turbulence distortion. How-
ever, the physical relationship between the uncertainty map and the
turbulence is weak. There is no way we can take the uncertainty map,
apply it to the clean image, and obtain the distorted image.

5.5.4 Single-image Restoration by Re-degradation

An alternative approach to the uncertainty map is the concept of re-
degradation proposed by Mao et al [165]. Instead of constructing the
uncertainty map and using it as an additional channel to the restora-
tion neural network, a turbulence degradation block is introduced as
a forward process to re-degrade the estimated image. The overall de-
sign is shown in Figure 5.25. Starting with the turbulence-distorted
image, the method first extracts the features using any backbone fea-
ture extractor. In this case, the method uses the vision transformer.
The extracted features are then sent to a pair of modules known as
the turbulence degradation module and a reconstruction module. In
conventional deep neural networks, the turbulence degradation module
is absent and so the extracted features are directly sent to a decoder
to reconstruct the image. Here, the extracted features are sent to the
degradation model to re-generate the distorted image.

The degradation module, in principle, should be a numerical tur-
bulence simulator such as phase-to-space introduced in Chapter 4.
However, to use the full phase-to-space transform, it is necessary to
make the simulator differentiable so that we can back propagate the
gradient to update the network parameters. Building a differentiable
forward model is an ongoing effort, although some have reported initial
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Figure 5.25: Re-degradation and linear approximation model by Mao
et al [165]. The core idea here is that after the features are extracted,
we re-degrade the features so that the decoded image is the distorted
frame. A simulated distorted frame is then compared with the re-
degraded image to compute the loss. This allows us to perform self-
supervised learning. Source: [165].

Figure 5.26: Excerpt of the image reconstruction results reported by
Mao et al. Source: [165].

success in doing so. In the absence of a full simulator, the degrada-
tion module in Figure 5.25 can still be made by considering a linear
degradation model. As the name suggests, the linear degradation is an
approximation to the full simulator. It is a trainable neural network
that takes a restored image (or its features) and re-degrades it to pro-
duce the distorted image (or its features). This network can be fully
convolutional or with some variations. The key is that it applies a set of
linear filters to the input image (features) to produce the re-degraded
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image. It is a rough (but trained) approximation to the full simulator.
On the positive side, the method bypasses the difficulty of recovering
the exact turbulence distortion by implicitly using a network to learn
how the distorted images are generated. Figure 5.26 shows some image
reconstruction results.

The re-degradation concept opens the door to self-supervised
learning. By re-degrading the restored images, we avoid the difficulty
of collecting a large amount of ground truth images which is often not
feasible. When we start to train the network, we can use synthetic
images to build a pre-trained model. Since synthetic images can be
generated in whatever way the simulator allows, we can easily cover
a range of turbulence conditions with ground truths. However, syn-
thetic images always have a domain gap with real data. Being able to
perform self-supervision makes the model fine-tuning without ground
truth achievable. As such, we can use self-supervision to bridge the
domain gap, and hence improve generalization.

One important result reported by Mao et al. [165] is an evaluation
scheme. In turbulence mitigation, the ground truth is often very diffi-
cult to obtain because the appearance of the target pattern changes due
to the weather condition. Even if there is no turbulence, the ambient
light, the color, etc. will alter the ground truth. Therefore, in some ap-
plications, it makes sense to use an alternative downstream recognition
task as an evaluation metric. Figure 5.27 reports an attempt to use
optical character recognition as a way to assess how well a mitigation
algorithm performs. If a mitigation algorithm performs well, we expect
the optical character recognition to improve.

5.5.5 Multi-frame End-to-End Transformer

A very recent approach, when this book is written, is a direct end-to-
end transformer by Zhang et al. [167] as shown in Figure 5.28 known
as the turbulence mitigation transformer (TMT). Building upon the
highly successful video restoration transform [181], the TMT presented
in [167] brings together two interesting ideas:

Decoupling into tilt and blur. Unlike the previous deep-learning
turbulence mitigation methods which are mostly black boxes, TMT
explicitly decouples the turbulence into tilt and blur. The method
first mitigates the tilts, because tilt correction is a slightly easier task
as it is evident from the success of deformable neural networks [182].
The tilt removal sub-network shown in Figure 5.28 uses a multi-scale
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Figure 5.27: Excerpt of the optical character recognition results re-
ported by Mao et al. Source: [165].

Figure 5.28: Turbulence mitigation transformer by Zhang et al [167].

depthwise convolution to pull the features and align them. The multi-
scale structure is critical here because at a lower resolution the tilt
is significantly easier to be compensated than at a high resolution.
The output of the sub-network is a set of three tilt-corrected images
at different resolutions. The ground truth tilt-corrected images are
generated by the phase-to-space simulator. In this way, the nature of
turbulence is implicitly maintained.

After tilts are removed, the residual blur is still spatially vary-
ing. Convolutional neural networks are known to be a poor candidate
for spatially varying degradations because the convolution kernels are
global operators. Vision transformers use self-attention to extract lo-
cal attention. Instead of using a global convolutional kernel, the self-
attention gives weights to individual kernels so that each pixel would
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experience a different combination of convolutions. In other words,
transformers allow us to restore the image according to the local dis-
tortion strength. This added degree of freedom plays a significant role
in the restoration task.

Temporal channel joint attention. The challenge of designing a
turbulence mitigation algorithm is how to generate global temporal at-
tention of all the frames without suffering from a high complexity and
memory requirement. In conventional transformers, generating atten-
tion has a complexity that grows quadratically with the number of pix-
els in the video. Thus, conventional transformers adopt a window-based
strategy to compute the attention locally. In TMT’s transformer, the
spatial coordinates are connected purely via convolution layers. This
makes the interaction among neighboring pixels smooth, which avoids
the inconsistent performance around the margin of local windows. The
core module of TMT is temporal-channel self-attention (TCJA). For
each pixel, TMT computes the self-attention matrix on the tempo-
ral and channel axes. Although the convolution operation is spatially
invariant, the combination of the features of each pixel is spatially in-
dependent, this enables spatially varying restoration. The dynamics
of the blur and residue jitter largely follow a zero-mean random pro-
cess. Therefore, by enabling full temporal connection over more frames,
TMT can be more efficient than conventional transformers in capturing
temporal dynamics.

Figure 5.29: Image reconstruction results of a real video sequence using
the turbulence mitigation transformer by Zhang et al. [167].

The end-to-end transformer developed by Zhang et al. [167] is
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known as the turbulence mitigation transformer (TMT). A few snap-
shots of the reconstruction results of TMT, and their comparisons with
other state-of-the-art restoration methods, are shown in Figure 5.29.
One important remark here is that the competing methods are strong
baselines re-trained with the turbulence data. These baselines are
significantly more powerful than the old networks (such as UNets or
DnCNN) shown in the previous subsection. That TMT is able to out-
perform the baselines is an important message that the physics-inspired
transformer networks are promising.

5.5.6 Generative Methods

Generative models have taken a significant footprint in the field of im-
age restoration due to their realistic pixel rendering capability. The
biggest strength of generative models (in particular the generative ad-
versarial networks, GANs) is the way it measures the similarity of
two distributions instead of using the conventional mean squared error.
GANs typically consist of a generator and a discriminator. The gen-
erator is a deep neural network that takes a random code (typically a
white Gaussian vector) and turns it into an image. The image will then
be compared with a ground truth sample from the training dataset by
a discriminator. The discriminator is another deep neural network that
gives a binary decision of whether the generated image is close enough
to the ground truth. If not, the generator has to be updated until the
discriminator can no longer differentiate the generated image and the
true image.

The advantage of a GAN is that it is not limited to the particular
type of degradation caused by the physics. More interestingly, the
resolution of the recovered image is not limited by the actual optical
resolution limit but by the prior distribution of the training set. For
example, even if one part of the image is extremely blurry, GAN can
generate sharp pixels by sampling the closest samples according to the
prior distribution it has learned. In some sense, GANs are a powerful
tool to hallucinate image content.

In the context of atmospheric turbulence, a recently proposed
method TurbuGAN [99] shows how GANs can be implemented. A
schematic diagram of TurbuGAN is shown in Figure 5.30. In Tur-
buGAN, the role of the discriminator is to differentiate between a real
turbulence-distorted image and a GAN-generated image. The GAN
generator takes a random code, renders a clean image, and sends it
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through the turbulence simulator (e.g., phase-to-space transform). The
synthesized image is then compared with the real turbulence image by
the discriminator.

Figure 5.30: Generative adversarial network (GAN) based algorithm
by Feng et al. [99].

TurbuGAN is a good demonstration that GAN is capable of han-
dling complex distortions such as atmospheric turbulence. It also demon-
strates the importance of a physics-based simulator, for without the
simulator it would be impossible to render a realistic turbulence effect.
In terms of image recovery, GAN generates sharper images than many
traditional methods. This observation is consistent with ATFaceGAN
[183], another recently proposed GAN-based image restoration method.
Though the nature of training a GAN is based on synthetic data, there
are works such as [92] which seek to use a GAN for learning statistics
of a scene.

Methods based on the GAN concepts generally suffer from sev-
eral bottleneck challenges. For example, there is always a controversy
about whether the hallucinated pixels are real or fake. For human con-
sumption, the borderline between the real and the fake is less of an
issue. However, for machine vision where we need to make a decision,
the hallucinated pixels may not contain the true information. Thus,
in many cases, there is no guarantee that a GAN-generated image can
lead to, for example, a higher face detection performance.

From an implementation perspective, the core part of a GAN-
based image restoration method is the generator. The generator can
use any standard network architecture, for example, a convolutional
network. If the network architecture is fixed, and if the training set
is also fixed, then the only difference between a GAN-based network
and a non-GAN-based network is the loss function. With complex
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degradations such as turbulence, the loss function alone does not make
the difference. In fact, the TSRWGAN results shown in Figure 5.29 are
based on the training of the generator of TSRWGAN [163]. The image
quality is just on par with other networks. Therefore, GAN methods
will likely have a long journey of obstacles to go through in the near
future.

The denoising diffusion probabilistic model is gaining strong mo-
mentum in the image restoration community. At a high level, the idea
is to train a diffusion model that allows us to draw samples from the
posterior distribution. The sampling process can be thought of as a
sequence of denoising steps where we gradually remove the noise by
estimating the key parameters of the signal. Without going into the
theoretical details of the method, we highlight a recent result published
by Nair et al. [184], as shown in Figure 5.31. As we can see the re-
stored image shows superior object details although some are noticeable
artifacts. The promise offered by the model is worth noting.

Figure 5.31: Image restoration by denoising diffusion probabilistic
model by Nair et al. [184]. Image source: [184].

5.6 Summary

The topic of imaging through turbulence from a reconstruction per-
spective is presented. The effective application of deep learning to this
problem is perhaps the biggest open problem today. While we have wit-
nessed many great innovations over the past few years, we anticipate
more results to come. This Chapter may be summarized as follows.
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Part 1 Atmospheric Forward Model: We stress the importance
of having an accurate and fast-forward model. This is not only for the
purpose of simulating realistic training and testing data, but it also
gives us the chance to integrate the forward model into the inverse
problem. We have seen in this Chapter that data simulated by a more
accurate forward model improves significantly the image restoration
results, even if we use the exact same neural network architecture.

The problem of tilt-then-blur or blur-then-tilt has been consid-
ered. We stress that the correct order is tilt-then-blur, but we also
argue that for efficient image restoration, the order can be flipped as
long as the benefits to the restoration algorithm are more than the
harms.

Part 2 Lucky Imaging and Classical Modeling: Classical methods
such as lucky imaging and image registration are still highly insight-
ful. When viewing an image through atmospheric turbulence, one may
notice the image going in and out of focus, with the high-quality obser-
vations being known as lucky observations. Lucky patches, in the case
of atmospheric imaging, imply that a digital lucky fusion must be per-
formed in order to piece together a high-quality image. A good image
restoration method should do its best to recover the lucky information.
To this end, we argue that multi-frame restorations are significantly
more beneficial than single-frame restorations.

Part 3 Deep Learning Approaches: Application of deep learning
towards reconstruction and modeling has shown great success in many
fields, though for turbulence, there still remains some gap. There are
some methods that have produced convincing and promising results,
and with the continued development of simulation capabilities, it is
reasonable this upward trend will continue. From the perspective of
the authors, integration of the true forward model is critical.
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